Abstract:
A neural stimulation system delivers neural stimulation to a target nerve with control of direction of propagation of evoked neural signals in one or more fiber types of the target nerve using electrode configuration, thereby providing effective therapy while minimizing unintended effects. In various embodiments, mechanical parameters of a multi-polar electrode are determined to provide directed propagation of the neural stimulation by effecting neural conduction block in or near the stimulation site. In various embodiments, the electrode includes a cathode for evoking action potentials and a plurality of anodes for blocking the propagation of the evoked action potentials in specified direction(s) and fiber type(s) while minimizing the formation of virtual cathodes.
Abstract:
An example of a system may include a stimulator and at least one controller. The stimulator may be configured to deliver nerve stimulation to capture a first set of axons in a nerve and to deliver depletion block stimulation to capture a second set of axons in the nerve, where the second set is a subset of the first. The depletion block stimulation may include a series of pulses at a depletion pulse frequency within a range between about 100 Hz to about 1 kHz, and the nerve stimulation may include a series of pulses at a stimulation pulse frequency within a range of about 0.25 Hz to about 50 Hz. At least a portion of the nerve stimulation and at least a portion of the depletion block stimulation may be delivered to be effective in providing a nerve block while delivering nerve stimulation.
Abstract:
An example of a system may include a depletion block neural stimulator and a depletion block controller. The depletion block neural stimulator may be configured to deliver a depletion block stimulation to a nerve. The depletion block stimulation may include a series of pulses at a pulse frequency within a range between about 100 Hz to about 1000 Hz. The depletion block controller may be configured to communicate with the depletion block neural stimulator and control the depletion block stimulation. The depletion block controller may be configured to receive a start depletion block signal and respond to the received start depletion block signal by initiating the delivery of the depletion block stimulation to the nerve, and the depletion block controller may be configured to receive a stop depletion block signal and respond to the received stop depletion block signal by terminating the delivery of the depletion block stimulation to the nerve.
Abstract:
An example of a method embodiment may include receiving a user programmable neural stimulation (NS) dose for an intermittent neural stimulation (INS) therapy, and delivering the INS therapy with the user programmable NS dose to an autonomic neural target of a patient. Delivering the INS therapy may include delivering NS bursts, and delivering the NS bursts may include delivering a number of NS pulses per cardiac cycle during a portion of the cardiac cycles and not delivering NS pulses during a remaining portion of the cardiac cycles. The method may further include sensing cardiac events within the cardiac cycles, and controlling delivery of the user programmable NS dose of INS therapy using the sensed cardiac events to time delivery of the number of NS pulses per cardiac cycle to provide the user programmable NS dose. The user programmable NS dose may determine the number of NS pulses per cardiac cycle.
Abstract:
An example of a method embodiment may deliver intermittent neural stimulation (INS) therapy to an autonomic neural target of a patient. The INS therapy includes neural stimulation (NS) ON times alternating with NS OFF times, and includes at least one NS burst of NS pulses during each of the NS ON times. For a given NS OFF time and subsequent NS ON time, delivering INS therapy may include monitoring a plurality of cardiac cycles during the NS OFF time, using the monitored plurality of cardiac cycles to predict cardiac event timing during the subsequent NS ON time, and controlling delivery of the INS therapy using the predicted cardiac event timing to time NS burst delivery of at least one NS burst for the subsequent NS ON time based on the predicted cardiac event timing.
Abstract:
An example of a system may include an electrode and a pulse generation system. The electrode may be configured to be implanted near a neural target that innervates airways. The pulse generation system may be configured to be operably connected to the electrode to deliver depletion block stimulation through the electrode to alleviate symptoms of pulmonary disease. The pulse generation system and the electrode may be configured to cooperate to capture axons in the neural target. The depletion block stimulation may include a series of pulses at a depletion pulse frequency.
Abstract:
An example of a system may include a stimulator and at least one controller. The stimulator may be configured to deliver nerve stimulation to capture a first set of axons in a nerve and to deliver depletion block stimulation to capture a second set of axons in the nerve, where the second set is a subset of the first. The depletion block stimulation may include a series of pulses at a depletion pulse frequency within a range between about 100 Hz to about 1 kHz, and the nerve stimulation may include a series of pulses at a stimulation pulse frequency within a range of about 0.25 Hz to about 50 Hz. At least a portion of the nerve stimulation and at least a portion of the depletion block stimulation may be delivered to be effective in providing a nerve block while delivering nerve stimulation.
Abstract:
An example of a system may include at least one electrode for placement on tissue in a carotid sinus region and a stimulator. The stimulator may be configured to use the at least one electrode to deliver neural stimulation to a baroreceptor region or at least one nerve innervating the baroreceptor region in the carotid sinus region to elicit a baroreflex response, and to deliver a blocking stimulation to a carotid body or at least one nerve innervating the carotid body in the carotid sinus region to inhibit a chemoreceptor response, the stimulator configured to simultaneously deliver the neural stimulation and the blocking stimulation.
Abstract:
An example of a system may include a depletion block neural stimulator and a depletion block controller. The depletion block neural stimulator may be configured to deliver a depletion block stimulation to a nerve. The depletion block stimulation may include a series of pulses at a pulse frequency within a range between about 100 Hz to about 1000 Hz. The depletion block controller may be configured to communicate with the depletion block neural stimulator and control the depletion block stimulation. The depletion block controller may be configured to receive a start depletion block signal and respond to the received start depletion block signal by initiating the delivery of the depletion block stimulation to the nerve, and the depletion block controller may be configured to receive a stop depletion block signal and respond to the received stop depletion block signal by terminating the delivery of the depletion block stimulation to the nerve.
Abstract:
A neural stimulation system delivers neural stimulation to a target nerve with control of direction of propagation of evoked neural signals in one or more fiber types of the target nerve using electrode configuration, thereby providing effective therapy while minimizing unintended effects. In various embodiments, mechanical parameters of a multi-polar electrode are determined to provide directed propagation of the neural stimulation by effecting neural conduction block in or near the stimulation site. In various embodiments, the electrode includes a cathode for evoking action potentials and a plurality of anodes for blocking the propagation of the evoked action potentials in specified direction(s) and fiber type(s) while minimizing the formation of virtual cathodes.