摘要:
A magnetic resonance fingerprinting (“MRF”) framework that implements simultaneous multislice acquisition techniques with a Hadamard RF-encoding to simultaneously acquire magnetic resonance data from multiple slices simultaneously is described. As one non-limiting example, magnetic resonance data can be simultaneously acquired from four different slices. In other embodiments, however, the Hadamard encoding can be condensed into one or two acquisitions, rather than four.
摘要:
A magnetic resonance fingerprinting (“MRF”) framework that implements simultaneous multislice acquisition techniques with a Hadamard RF-encoding to simultaneously acquire magnetic resonance data from multiple slices simultaneously is described. As one non-limiting example, magnetic resonance data can be simultaneously acquired from four different slices. In other embodiments, however, the Hadamard encoding can be condensed into one or two acquisitions, rather than four.
摘要:
A system and method is provided for acquisition of magnetic resonance fingerprinting (“MRF”) data that includes determining a non-locally sequential sampling pattern for a Cartesian grid of k-space, performing a series of sequence blocks using acquisition parameters that vary between sequence blocks to acquire MRF data from a subject using the Cartesian grid of k-space and the determined non-locally sequential sampling pattern, assembling the MRF data into a series of signal evolutions, comparing the series of signal evolutions to a dictionary of known signal evolutions to determine tissue properties of the subject, and generating a report indicating the tissue properties of the subject.
摘要:
The present disclosure provides systems and methods for magnetic resonance fingerprinting (MRF). The method including steps comprising acquiring a plurality of MRF signals from a plurality of excitation volumes within a subject, wherein at least two of the plurality of excitation volumes differ in location within the subject, and wherein each of the excitation volumes partially overlap to form an overlap volume. The method also includes comparing the plurality of MRF signals acquired from the overlap volume with a dictionary of signal evolutions, determining one or more physical parameters of the overlap volume within the subject, and generating a report at least indicating the one or more physical parameters of the overlap volume within the subject.
摘要:
Apparatus, methods, and other embodiments associated with NMR fingerprinting are described. One example NMR apparatus includes an NMR logic that repetitively and variably samples a (k, t, E) space associated with an object to acquire a set of NMR signals that are associated with different points in the (k, t, E) space. Sampling is performed with t and/or E varying in a non-constant way. The NMR apparatus may also include a signal logic that produces an NMR signal evolution from the NMR signals, and a characterization logic that characterizes a resonant species in the object as a result of comparing acquired signals to reference signals. The NMR signal evolution may be assigned to a cluster based on the characterization of the resonant species. Cluster overlay maps may be produced simultaneously based, at least in part, on the clustering. The clusters may be associated with different tissue types.
摘要:
Apparatus, methods, and other embodiments associated with optimizing sounds produced during nuclear magnetic resonance (NMR) fingerprinting are described. One example NMR apparatus includes an NMR logic to repetitively and variably sample a (k, t, E) space associated with a patient to acquire a set of NMR signals. Members of the set of NMR signals are associated with different points in the (k, t, E) space. Sampling is performed with t and/or E varying in a non-constant way. The varying parameters may include flip angle, echo time, RF amplitude, and other parameters. The parameters are varied in different acquisition blocks to facilitate matching sounds produced in response to the acquisition blocks to a desired set of sounds. The desired set of sounds may be a musical piece.
摘要:
Apparatus, methods, and other embodiments associated with nuclear magnetic resonance (NMR) fingerprinting using echo splitting are described. One example apparatus includes an NMR logic configured to repetitively and variably sample a (k, t, E) space associated with an object to acquire a set of NMR signals. Members of the set of NMR signals are associated with different points in the (k, t, E) space. Sampling is performed with t and/or E varying in a non-constant way. The varying parameters may include the number of echo splitting pulses, spacings between echo splitting pulses, flip angle of echo splitting pulses, echo time, RF amplitude, and other parameters. The NMR apparatus may also include a signal logic configured to produce an NMR signal evolution from the NMR signals, and a characterization logic configured to characterize a resonant species in the object as a result of comparing acquired signals to reference signals.
摘要:
Example embodiments associated with NMR fingerprinting are described. One example NMR apparatus includes an NMR logic that repetitively and variably samples a (k, t, E) space associated with an object to acquire a set of NMR signals that are associated with different points in the (k, t, E) space. Sampling is performed with t and/or E varying in a non-constant way. Sampling is performed in response to a fast imaging with steady state free precession (MRF-FISP) pulse sequence having an unbalanced gradient that dephases transverse magnetization. The NMR apparatus may also include a signal logic that produces an NMR signal evolution from the NMR signals, and a characterization logic that characterizes a resonant species in the object as a result of comparing acquired signals to reference signals. The unbalanced gradient in the MRF-FISP pulse sequence reduces sensitivity to B0 in homogeneity.
摘要:
Apparatus, methods, and other embodiments associated with NMR fingerprinting are described. One example NMR apparatus includes an NMR logic that repetitively and variably samples a (k, t, E) space associated with an object to acquire a set of NMR signals that are associated with different points in the (k, t, E) space. Sampling is performed with t and/or E varying in a non-constant way. Sampling is performed in response to a diffusion-weighted double-echo pulse sequence. Sampling acquires transient-state signals of the double-echo sequence. The NMR apparatus may also include a signal logic that produces an NMR signal evolution from the NMR signals, and a characterization logic that characterizes a resonant species in the object as a result of comparing acquired signals to reference signals.
摘要:
The present disclosure provides systems and methods for magnetic resonance fingerprinting (MRF). The method including steps comprising acquiring a plurality of MRF signals from a plurality of excitation volumes within a subject, wherein at least two of the plurality of excitation volumes differ in location within the subject, and wherein each of the excitation volumes partially overlap to form an overlap volume. The method also includes comparing the plurality of MRF signals acquired from the overlap volume with a dictionary of signal evolutions, determining one or more physical parameters of the overlap volume within the subject, and generating a report at least indicating the one or more physical parameters of the overlap volume within the subject.