Abstract:
A redundancy system for a steering system having a primary controller and a primary power source is provided. The redundancy system may include a secondary controller coupled to a secondary power source and configured to manage control of the steering system, and an interface circuit disposed between at least a first node and a second node. The first node may be in electrical communication with the primary power source, and the second node may be in electrical communication with the secondary power source. The interface circuit may be configured to selectively engage a self-test of the primary power source and the secondary power source, isolate a short at the first node from the secondary power source, and isolate a short at the second node from the primary power source.
Abstract:
A redundancy system for a steering system having a primary controller and a primary power source is provided. The redundancy system may include a secondary controller coupled to a secondary power source and configured to manage control of the steering system, and an interface circuit disposed between at least a first node and a second node. The first node may be in electrical communication with the primary power source, and the second node may be in electrical communication with the secondary power source. The interface circuit may be configured to selectively engage a self-test of the primary power source and the secondary power source, isolate a short at the first node from the secondary power source, and isolate a short at the second node from the primary power source.
Abstract:
A failsafe pilot selector valve may include at least one inlet port, a first outlet port, a second outlet port, and a biasing element. The failsafe pilot selector valve may have a first end position with the at least one inlet port in fluid communication with the first outlet port, a second end position with the at least one inlet port in fluid communication with the first outlet port, and an intermediate position between the first end position and the second end position with the at least one inlet port in fluid communication with the second outlet port. The biasing element may provide a biasing force to move the failsafe pilot selector valve to the first end position. The pilot selector valve can alternately provide pilot fluid to primary and redundant control elements of a redundantly controlled system in fluid communication with the outlet ports.
Abstract:
A failsafe pilot selector valve may include at least one inlet port, a first outlet port, a second outlet port, and a biasing element. The failsafe pilot selector valve may have a first end position with the at least one inlet port in fluid communication with the first outlet port, a second end position with the at least one inlet port in fluid communication with the first outlet port, and an intermediate position between the first end position and the second end position with the at least one inlet port in fluid communication with the second outlet port. The biasing element may provide a biasing force to move the failsafe pilot selector valve to the first end position. The pilot selector valve can alternately provide pilot fluid to primary and redundant control elements of a redundantly controlled system in fluid communication with the outlet ports.
Abstract:
An electro-hydraulic steering system for an articulated machine includes an electrical circuit and a hydraulic circuit. The electrical circuit includes a controller, an electro-hydraulic valve assembly, and a spool position system. The hydraulic circuit includes a pump, at least one cylinder in selective fluid communication with the pump, and the valve assembly. The controller includes a computer-readable storage medium storing a steering system monitoring application which performs several steps. A desired flow of pressurized fluid to each cylinder and a desired spool position for the spool of the electro-hydraulic valve assembly, based upon the desired flow of pressurized fluid, are determined. The desired spool position and an actual spool position are compared to determine a spool-based flow error, which is summed over a period of time to determine a cumulative spool-based flow error. An event warning is issued when the cumulative spool-based flow error exceeds a threshold.