摘要:
Mechanisms for providing linear relationship between temperatures and digital codes are disclosed. In one method, at a particular temperature, a circuit in the sensor provides a temperature dependent reference voltage, and a compared voltage, to a comparator. The temperature dependent reference voltage depends on temperature in complement to absolute temperature or alternatively depends on temperature in proportion to absolute temperature. The compared voltage is generated corresponding to digital analog converter (DAC) codes as inputs. Another circuit varies the DAC codes until the temperature dependent reference voltage and the compared voltage are equal so that the dependent reference voltage corresponds to a DAC code. The various temperatures experienced by the temperature sensing circuit and the DAC codes are substantially linearly related.
摘要:
An integrated circuit includes a first current source. A second current source is electrically coupled with the first current source via a conductive line. A switch circuit is coupled between the first current source and the second current source. A first circuit is coupled between a first node and a second node. The first node is disposed between the first current source and the switch circuit. The second node is coupled with the first current source. The first circuit is configured for substantially equalizing voltages on the first node and the second node. A second circuit is coupled between a third node and a fourth node. The third node is disposed between the second current source and the switch circuit. The fourth node is disposed coupled with the second current source. The second circuit is configured for substantially equalizing voltages on the third node and the fourth node.
摘要:
A method of operating a charge pump of a phase-lock assistant circuit includes determining a first relative timing relationship of a phase of a data signal to a phase of a first phase clock. A second relative timing relationship of the phase of the data signal to a phase of a second phase clock is determined, and the first and second phase clocks have a 45° phase difference. An up signal and a down signal are generated in response to the first relative timing relationship and the second relative timing relationship. The charge pump circuit is driven according to the up signal and the down signal.
摘要:
A circuit including a first circuit configured to receive an input signal and first, third and fifth phase clocks of a clock, and generate a first early signal indicating the clock is earlier than the input signal and a first late signal indicating the clock is later than the input signal. The circuit further includes a second circuit configured to receive an input signal and second, a fourth and sixth phase clocks of the clock, and generate a second early signal indicating the clock is earlier than the input signal and a second late signal indicating the clock is later than the input signal. The circuit further includes a third circuit configured to generate a first increase signal. The circuit further includes a fourth circuit configured to generate a first decrease signal.
摘要:
Some embodiments regard a circuit comprising: a first circuit configured to lock a frequency of an output clock to a frequency of a reference clock; a second circuit configured to align an input signal to a phase clock of the output clock; a third circuit configured to use a first set of phase clocks of the output clock and a second set of phase clocks of the output clock to improve alignment of the input signal to the phase clock of the output clock; and a lock detection circuit configured to turn on the first circuit when the frequency of the output clock is not locked to the frequency of the reference clock; and to turn off the first circuit and to turn on the second circuit and the third circuit when the frequency of the output clock is locked to the frequency of the reference clock.
摘要:
A thermal sensor includes a comparator having a first and second input nodes. A reference voltage generator is electrically coupled with the first input node. The reference voltage generator is configured to provide a reference voltage that is substantially temperature-independent. A temperature sensing circuit is electrically coupled with the second input node. The temperature sensing circuit is configured to provide a temperature-dependent voltage. The temperature sensing circuit includes a current mirror. A first metal-oxide-semiconductor (MOS) transistor is electrically coupled between the current mirror and ground. A first resistor is electrically coupled with the current mirror. A second MOS transistor is electrically coupled with the first resistor in series. The second MOS transistor and the first resistor are electrically coupled with the first MOS transistor in a parallel fashion.
摘要:
Embodiments described herein are related to a counter. In some embodiments, the counter can be used as a divider, e.g., in a fractional PLL. In some embodiments, the counter (e.g., the main counter or counter C) includes a first counter (e.g., counter C1) and a second counter (e.g., counter C2), which, together with the first counter C1, perform the counting function for counter C. For example, if counter C is to count to the value N, then counter C1 counts, e.g., to N1, and counter C2 counts to N2 where N=N1+N2. For counter C1 to count to N1, N1 is loaded to counter C1. Similarly, for counter C2 to count to N2, N2 is loaded to counter C2. While counter C1 counts (e.g., to N1), N2 can be loaded to counter C2. After counter C1 finishes counting to N1, N2, if loaded, is available for counter C2 to start counting to this N2. Counters C1 and C2 can alternately count and thus provide continuous counting for counter C. Other embodiments and exemplary applications are also disclosed.
摘要:
A voltage reference circuit with temperature compensation includes a power supply, a reference voltage supply, a first PMOS transistor with its source connected to the power supply voltage, a second PMOS transistor with its source connected to the power supply and its gate and drain connected to the first PMOS gate, a first NMOS transistor with its gate and drain connected the first PMOS drain, a second NMOS transistor with its drain connected to the second PMOS drain and its gate connected with the first NMOS gate to the reference voltage supply, a resistor connected to the second NMOS source and ground, and an op-amp with its inverting input and its output connected the first NMOS source and its non-inverting input connected to the ground. In another aspect, a voltage reference circuit output is coupled to an NMOS gate in saturation mode connected to another voltage reference circuit.
摘要:
A memory circuit includes at least one memory array. At least one sleep transistor is electrically coupled between the at least one memory array and a first power line for providing a first power voltage. At least one diode-connected transistor is electrically coupled between the at least one memory array and the first power line. A back-bias circuit is electrically coupled with a bulk of the at least one diode-connected transistor.
摘要:
Embodiments described herein are related to a counter. In some embodiments, the counter can be used as a divider, e.g., in a fractional PLL. In some embodiments, the counter (e.g., the main counter or counter C) includes a first counter (e.g., counter C1) and a second counter (e.g., counter C2), which, together with the first counter C1, perform the counting function for counter C. For example, if counter C is to count to the value N, then counter C1 counts, e.g., to N1, and counter C2 counts to N2 where N=N1+N2. For counter C1 to count to N1, N1 is loaded to counter C1. Similarly, for counter C2 to count to N2, N2 is loaded to counter C2. While counter C1 counts (e.g., to N1), N2 can be loaded to counter C2. After counter C1 finishes counting to N1, N2, if loaded, is available for counter C2 to start counting to this N2. Counters C1 and C2 can alternately count and thus provide continuous counting for counter C. Other embodiments and exemplary applications are also disclosed.