摘要:
A system for preparing excited molecular oxygen in the excited singlet-delta electronic state for use in a chemical laser that minimizes salt formation utilizing the common ion effect. In one version, basic hydrogen peroxide is formed by combining H.sub.2 O.sub.2 and at least two bases. In another version of the invention, the basic hydrogen peroxide is reacted with a gas containing at least two halogen species.
摘要翻译:用于在激发的单线态 - 三角洲电子状态中制备激发的分子氧的系统,用于化学激光,其利用共同离子效应最小化盐形成。 在一个版本中,通过组合H 2 O 2和至少两个碱形成碱式过氧化氢。 在本发明的另一个方案中,碱性过氧化氢与含有至少两种卤素物质的气体反应。
摘要:
A system for preparing excited molecular oxygen in the excited singlet-delta electronic state for use in a chemical laser that minimizes salt formation utilizing the common ion effect. In one version, basic hydrogen peroxide is formed by combining H.sub.2 O.sub.2 and at least two bases. In another version of the invention, the basic hydrogen peroxide is reacted with a gas containing at least two halogen species.
摘要翻译:用于在激发的单线态 - 三角洲电子状态中制备激发的分子氧的系统,用于化学激光,其利用共同离子效应最小化盐形成。 在一个版本中,通过组合H 2 O 2和至少两个碱形成碱式过氧化氢。 在本发明的另一个方案中,碱性过氧化氢与含有至少两种卤素物质的气体反应。
摘要:
A system for preparing excited molecular oxygen in the excited singlet-delta electronic state for use in a chemical laser that minimizes salt formation utilizing the common ion effect. In one version, basic hydrogen peroxide is formed by combining H.sub.2 O.sub.2 and at least two bases. In another version of the invention, the basic hydrogen peroxide is reacted with a gas containing at least two halogen species.
摘要:
A singlet-delta oxygen generator 10 comprises a chamber 14 in which a gas stream 22 of singlet-delta oxygen, O.sub.2 (.sup.1 .DELTA.), is generated; a water vapor trap 40 to remove water vapor from the gas stream, and a liquid separator 60 downstream of the water vapor trap to separate liquid from the gas stream subsequent to removal of the water vapor. The water vapor trap comprises a liquid droplet dispersing device 42 which forms a droplet field 44 of cold liquid droplets in the chamber. The cold liquid droplets interact with and condense water vapor in the gas stream. The cold liquid is preferably hydrogen peroxide. The liquid separator comprises a baffle 62 arrangement which forms a tortuous flow path for the gas stream. Liquid in the gas stream is unable to traverse the baffles and is separated from the liquid, to produce an essentially dry gas stream for introduction into a gain generator 34 downstream of the singlet-delta oxygen generator.
摘要:
A high energy chemical laser capable of being operated in an aircraft to interdict and destroy theater ballistic missiles is provided. A key to the chemical laser of the invention is the use of individual chemical lasers whose individual photon energy outputs can be combined into a single high-energy laser beam.
摘要:
A laser weapon system and method are provided for detecting and engaging a large number of target munitions with a plurality of independently steered laser beams, and is particularly adapted to defend against multiple biological and chemical warfare munitions. The system includes a laser generator for generating laser energy and a segmented mirror having an array of controllable mirror segments for dividing the laser energy into a plurality of steerable laser beams. The low energy divided laser beams are directed through an amplifier to achieve high energy laser beams which are output in a fanned array within a shield zone. A detector senses the presence of munitions. An illuminator laser continually sweeps the shield zone and a receiver receives reflections from munitions which fall within the shield zone. The relative position of the detected munitions within the shield zone are compared to the position of laser beams and control signals are determined so as to steer the laser beams to engage the detected munitions within the shield zone and attempt to destroy the engaged munitions.
摘要:
A gas jet nozzle (20, 60) for an extreme-ultraviolet light (EUV) source, including a housing (22, 62) having a front (24, 64) and a back (26, 66). The housing (22, 62) is coupleable to a primary gas source (44) and a secondary gas source (46) and is adapted to. expel primary gas (36, 76) and secondary gas (42, 82) from the housing front (24, 64). The housing (22, 62) has a gas-expelling primary channel (39, 70) located centrally within the housing (22, 62) and a gas-expelling secondary channel (34, 74) proximate the primary channel (39, 70). The primary channel (39, 70) may be circular and the secondary channel (34, 74) may be annular, surrounding the primary channel (39, 70). A secondary gas stream (42, 82) expelled from the secondary channel (34, 74) restricts the lateral expansion of a primary gas stream (36, 76) expelled from the primary channel (39, 70), optimizing gas jet properties and reducing heating and erosion of the nozzle (20, 60).
摘要:
A gain generator 10 for use in high-energy flowing gas lasers such as COIL devices comprises a chemical reactant mixing nozzle 12 disposed in a gain medium 16. The nozzle includes a plurality of blades 22 formed of a plastic material resistant to chemical attack at the operating temperature of the gain medium and non-catalytic to O.sub.2 (.sup.1 .DELTA.). A preferred material is polyetherimide. The gain medium includes octagonal shaped openings 50 for the optical mode of the laser beam.
摘要:
A device and corresponding method for optical phase conjugation using a stimulated Brillouin scattering (SBS) medium and resulting in a reduction in the (SBS) threshold level. An incident light beam is brought to a first focus in the SBS medium, and light transmitted through the first focus is brought to a second focus in the SBS medium. Light transmitted through the second focus is brought to a third focus, and so forth through N foci in the medium. The effective SBS threshold level is inversely proportional to the number of foci N, which may be located in separate SBS cells, or may be in a single cell through which multiple passes are made by means of appropriate reflective optics. Laser sources operating in multiple longitudinal modes are handled by spacing the foci at an intergral multiple of the laser resonant cavity length.