摘要:
The invention provides a method for determining phase transition pressure of downhole retrograde condensate. An OBM-contamination value is produced from a time-series of fluorescence values produced by measuring fluorescence emitted from a single-phase flow of OBM-contaminated formation fluid in a downhole cell during a cycle of time. The pressure of fluid in the cell is set at a transition boundary by incrementing drawdown pressure and monitoring the presence or absence of a phase transition. An apparent phase transition pressure value associated with the cycle of time is produced by setting apparent phase transition pressure value equal to cell pressure. This process is repeated for several cycles of time to produce a number of pairs of OBM-contamination value and apparent phase transition pressure value as OBM-contamination decreases over time. The value of phase transition pressure is determined by extrapolating from a representation of apparent phase transition pressure values versus OBM-contamination values.
摘要:
A method for determining properties of a formation fluid including obtaining data related to an optical density at a methane peak and an optical density at an oil peak for a fluid sample at a plurality of times, calculating an apparent gas-oil-ratio of the sample fluid from the optical density of the fluid sample at the methane peak to the optical density of the fluid sample at the oil peak at each of the plurality of times based on the data, selecting a power function of a sampling parameter for a buildup of the apparent gas-oil-ratio, calculating an exponential constant of the power function based on the data, and determining at least one selected from the group consisting of a contamination free gas-oil-ratio and a percent contamination.
摘要:
A method of downhole characterization of formation fluids is provided. The method includes: estimating a rough value of the bubble point pressure of the formation fluids; depressurizing the formation fluids at a first speed to a certain pressure which is a predetermined value higher than the estimated rough value while the formation fluids are isolated in a portion of the flowline; and depressurizing the isolated fluids at a second speed which is slower than the first speed in order to measure a precise value of the bubble point pressure.
摘要:
A downhole characterization apparatus for formation fluids is provided. The apparatus comprises a downhole tool including a flowline for flowing the formation fluids capable of isolating a quantity of the formation fluids in a portion thereof; and a pump unit for depressurizing the isolated formation fluids; and a measurement controller which controls the downhole tool. The measurement controller includes a rough value estimation unit which estimates a rough value of the bubble point pressure of the formation fluids; and a speed controller which controls the depressurizing speed of the pump unit such that the isolated formation fluids are depressurized at a first speed to a certain pressure which is a predetermined value higher than said estimated rough value, and the isolated fluids are depressurized at a second speed which is slower than said first speed in order to measure a precise value of the bubble point pressure.
摘要:
A method and system for characterizing asphaltene gradients of a reservoir of interest and analyzing properties of the reservoir of interest based upon such asphaltene gradients. The analysis employs a correlation that relates insoluble asphaltene concentration to spectrophotometry measurement data measured at depth.
摘要:
Methods and apparatus for investigating a hydrocarbon bearing geological formation traversed by a borehole are disclosed. A borehole tool is used to acquire a sample of fluid in the formation. Compositional analysis of the fluid sample is conducted to provide a determination of the composition of the sample. The sample composition is then related to a model of the thermodynamic behavior of the fluid; i.e., the mass fractions of the fluid components are used as inputs to an equation of state (EOS) to predict the phase behavior of the fluid.
摘要:
Methods and apparatus to form a well are disclosed. An example method involves determining a reservoir fluid map associated with at least a portion of a reservoir. The first fluid map has first fluid composition data associated therewith. The example method also involves measuring a formation fluid and determining a second fluid composition data based on the measurement. The second fluid composition data is compared with the first fluid composition data associated with the reservoir fluid map, and a well trajectory is adjusted based on the comparison.
摘要:
Methods for optimizing petroleum reservoir analysis and sampling using a real-time component wherein heterogeneities in fluid properties exist. The methods help predict the recovery performance of oil such as, for example, heavy oil, which can be adversely impacted by fluid property gradients present in the reservoir. Additionally, the methods help optimize sampling schedules of the reservoir, which can reduce overall expense and increase sampling efficiency. The methods involve the use of analytical techniques for accurately predicting one or more fluid properties that are not in equilibrium in the reservoir. By evaluating the composition of downhole fluid samples taken from the reservoir using sensitive analytical techniques, an accurate base model of the fluid property of interest can be produced. With the base model in hand, real-time data can be obtained and compared to the base model in order to further define the fluid property of interest in the reservoir.
摘要:
A formation fluid sampling tool is provided with reactants which are carried downhole and which are combined in order to generate heat energy which is applied to the formation adjacent the borehole. By applying heat energy to the formation, the formation fluids are heated, thereby increasing mobility, and fluid sampling is expedited.
摘要:
A formation fluid sampling tool is provided with reactants which are carried downhole and which are combined in order to generate heat energy which is applied to the formation adjacent the borehole. By applying heat energy to the formation, the formation fluids are heated, thereby increasing mobility, and fluid sampling is expedited.