Method and system for hybrid rigid registration based on joint correspondences between scale-invariant salient region features
    1.
    发明授权
    Method and system for hybrid rigid registration based on joint correspondences between scale-invariant salient region features 失效
    基于尺度不变突出特征之间的联合对应的混合刚体配准的方法和系统

    公开(公告)号:US07362920B2

    公开(公告)日:2008-04-22

    申请号:US10945675

    申请日:2004-09-21

    IPC分类号: G06K9/32

    摘要: A method of aligning a pair of images includes providing a pair of images with a first image and a second image, wherein the images comprise a plurality of intensities corresponding to a domain of points in a D-dimensional space. Salient feature regions are identified in both the first image and the second image, a correspondence between each pair of salient feature regions is hypothesized, wherein a first region of each pair is on the first image and a second region of each pair is on the second image, the likelihood of the hypothesized correspondence of each pair of feature regions is measured, and a joint correspondence is determined from a set of pairs of feature regions with the greatest likelihood of correspondence.

    摘要翻译: 对准一对图像的方法包括提供具有第一图像和第二图像的一对图像,其中图像包括对应于D维空间中的点的域的多个强度。 在第一图像和第二图像两者中识别出显着特征区域,假设每对突出特征区域之间的对应关系,其中每对的第一区域在第一图像上,并且每一对的第二区域位于第二图像的第二图像上 测量每对特征区域的假设对应关系的可能性,并且从一组对应关系最大的特征区域对确定联合对应关系。

    Method and system for hybrid rigid registration of 2D/3D medical images
    2.
    发明授权
    Method and system for hybrid rigid registration of 2D/3D medical images 有权
    2D / 3D医学图像混合刚性配准的方法和系统

    公开(公告)号:US07409108B2

    公开(公告)日:2008-08-05

    申请号:US10946204

    申请日:2004-09-21

    IPC分类号: G06K9/32 G06K9/68

    CPC分类号: G06K9/00208 G06T7/33 G06T7/35

    摘要: A method of aligning a pair of images with a first image and a second image, wherein said images comprise a plurality of intensities corresponding to a domain of points in a D-dimensional space includes identifying feature points on both images using the same criteria, computing a feature vector for each feature point, measuring a feature dissimilarity for each pair of feature vectors, wherein a first feature vector of each pair is associated with a first feature point on the first image, and a second feature vector of each pair is associated with a second feature point on the second image. A correspondence mapping for each pair of feature points is determined using the feature dissimilarity associated with each feature point pair, and an image transformation is defined to align the second image with the first image using one or more pairs of feature points that are least dissimilar.

    摘要翻译: 一种将一对图像与第一图像和第二图像对准的方法,其中所述图像包括对应于D维空间中的点的区域的多个强度,包括使用相同标准在两个图像上识别特征点,计算 每个特征点的特征向量,测量每对特征向量的特征不相似性,其中每对的第一特征向量与第一图像上的第一特征点相关联,并且每对的第二特征向量与 第二个图像上的第二个特征点。 使用与每个特征点对相关联的特征不相似度来确定每对特征点的对应关系,并且定义图像变换以使用至少不相似的一对或多对特征点将第二图像与第一图像对准。

    Method and system for hybrid rigid registration of 2D/3D medical images
    3.
    发明申请
    Method and system for hybrid rigid registration of 2D/3D medical images 有权
    2D / 3D医学图像混合刚性配准的方法和系统

    公开(公告)号:US20050094898A1

    公开(公告)日:2005-05-05

    申请号:US10946204

    申请日:2004-09-21

    IPC分类号: G06K9/00 G06K9/64 G06T7/40

    CPC分类号: G06K9/00208 G06T7/33 G06T7/35

    摘要: A method of aligning a pair of images with (101) a first image and a second image, wherein said images comprise a plurality of intensities corresponding to a domain of points in a D-dimensional space includes identifying (102) feature points on both images using the same criteria, computing (103) a feature vector for each feature point, measuring a feature dissimilarity (104) for each pair of feature vectors, wherein a first feature vector of each pair is associated with a first feature point on the first image, and a second feature vector of each pair is associated with a second feature point on the second image. A correspondence mapping (105) for each pair of feature points is determined using the feature dissimilarity associated with each feature point pair, and an image transformation (106) is defined to align (108) the second image with the first image using one or more pairs of feature points that are least dissimilar.

    摘要翻译: 一种将一对图像与(101)第一图像和第二图像对准的方法,其中所述图像包括对应于D维空间中的点的区域的多个强度,包括在两个图像上识别(102)特征点 使用相同的标准,计算(103)每个特征点的特征向量,测量每对特征向量的特征不相似性(104),其中每对特征向量的第一特征向量与第一图像上的第一特征点相关联 并且每对的第二特征向量与第二图像上的第二特征点相关联。 使用与每个特征点对相关联的特征不相似度来确定每对特征点的对应映射(105),并且定义图像变换(106)以使用一个或多个对象(108)将第二图像与第一图像对准 成对的特征点是最不相似的。

    Method and system for hybrid rigid registration based on joint correspondences between scale-invariant salient region features
    4.
    发明申请
    Method and system for hybrid rigid registration based on joint correspondences between scale-invariant salient region features 失效
    基于尺度不变突出特征之间的联合对应的混合刚体配准的方法和系统

    公开(公告)号:US20050078881A1

    公开(公告)日:2005-04-14

    申请号:US10945675

    申请日:2004-09-21

    摘要: A method of aligning a pair of images includes providing a pair of images with a first image and a second image, wherein the images comprise a plurality of intensities corresponding to a domain of points in a D-dimensional space. Salient feature regions are identified in both the first image and the second image, a correspondence between each pair of salient feature regions is hypothesized, wherein a first region of each pair is on the first image and a second region of each pair is on the second image, the likelihood of the hypothesized correspondence of each pair of feature regions is measured, and a joint correspondence is determined from a set of pairs of feature regions with the greatest likelihood of correspondence.

    摘要翻译: 对准一对图像的方法包括提供具有第一图像和第二图像的一对图像,其中图像包括对应于D维空间中的点的域的多个强度。 在第一图像和第二图像两者中识别出显着特征区域,假设每对突出特征区域之间的对应关系,其中每对的第一区域在第一图像上,并且每一对的第二区域位于第二图像的第二图像上 测量每对特征区域的假设对应关系的可能性,并且从一组对应关系最大的特征区域对确定联合对应关系。

    Fast parametric non-rigid image registration based on feature correspondences
    5.
    发明申请
    Fast parametric non-rigid image registration based on feature correspondences 失效
    基于特征对应的快速参数非刚性图像配准

    公开(公告)号:US20050249434A1

    公开(公告)日:2005-11-10

    申请号:US11099143

    申请日:2005-04-05

    IPC分类号: G06K9/00 G06K9/32 G06K9/64

    CPC分类号: G06K9/6211

    摘要: A method and system for non-rigidly registering a fixed to a moving image utilizing a B-Spline based free form deformation (FFD) model is disclosed. The methodology utilizes sparse feature correspondences to estimate an elastic deformation field in a closed form. In a multi-resolution manner, the method is able to recover small to large non-rigid deformations. The resulting deformation field is globally smooth and guarantees one-to-one mapping between the images being registered. The method generally comprises the steps of: detecting feature points on the fixed image and feature points on the moving image; assigning a feature vector to each feature point; calculating the dissimilarity of each pair of feature vectors for feature pairs on the fixed image and the moving image; calculating the correspondence between feature pairs based on the dissimilarity measure; solving for a dense deformation field P using a closed form FFD model; and transforming the moving image and the feature points on the moving image using a current FFD deformation field estimate.

    摘要翻译: 公开了一种使用B-Spline的自由形状变形(FFD)模型非固定地将固定到运动图像上的方法和系统。 该方法利用稀疏特征对应来估计封闭形式的弹性变形场。 以多分辨率方式,该方法能够恢复小到大的非刚性变形。 所产生的变形场全局平滑,并保证要注册的图像之间的一对一映射。 该方法通常包括以下步骤:检测固定图像上的特征点和运动图像上的特征点; 向每个特征点分配特征向量; 计算固定图像和运动图像上特征对的每对特征向量的不相似性; 基于不相似度计算特征对之间的对应关系; 使用封闭形式的FFD模型求解致密变形场P; 以及使用当前FFD变形场估计来变换运动图像上的运动图像和特征点。

    Robust click-point linking with geometric configuration context: interactive localized registration approach
    6.
    发明申请
    Robust click-point linking with geometric configuration context: interactive localized registration approach 有权
    强大的点击链接与几何配置上下文:交互式本地化注册方法

    公开(公告)号:US20070242901A1

    公开(公告)日:2007-10-18

    申请号:US11705375

    申请日:2007-02-12

    IPC分类号: G06K9/32

    CPC分类号: G06K9/4671 G06K9/6211

    摘要: A framework is disclosed for robust click-point linking, defined as estimating a single point-wise correspondence between a pair of data domains given a user-specified point in one domain. It can also be interpreted as robust and efficient interactive localized registration of a monomodal data pair. To link visually dissimilar local regions, the concept of Geometric Configuration Context (GCC) is introduced. GCC represents the spatial likelihood of the point corresponding to the click-point in the other domain. A set of scale-invariant saliency features are pre-computed for both data, and GCC is modeled by a Gaussian mixture whose component mean and width are determined as a function of the neighboring saliency features and their correspondences. This allows correspondence of dissimilar parts using only geometrical relations without comparing the local appearances. GCC models are derived for three transformation classes: 1) pure translation, 2) scaling and translation, and 3) similarity transformation. For solving the linking problem, a variable-bandwidth mean shift method is adapted for estimating the maximum likelihood solution of the GCC.

    摘要翻译: 公开了用于鲁棒点击链接的框架,其被定义为在给定一个域中的用户指定点的一对数据域之间估计单个点对应关系。 它也可以被解释为单模数据对的鲁棒且有效的交互式局部化注册。 为了连接视觉上不同的局部区域,引入了几何配置上下文(GCC)的概念。 GCC表示对应于另一个域中的点击点的点的空间似然性。 对于这两种数据预先计算了一组尺度不变的显着特征,并且GCC由高斯混合来建模,其组分平均值和宽度被确定为邻近显着特征及其对应关系的函数。 这允许不相似部分的对应使用仅几何关系而不比较局部外观。 GCC模型是为三个变换类派生的:1)纯翻译,2)缩放和翻译,以及3)相似变换。 为了解决连接问题,可变带宽平均偏移方法适用于估计GCC的最大似然解。

    System and Method for Generating Three-Dimensional Images From Two-Dimensional Bioluminescence Images and Visualizing Tumor Shapes and Locations
    8.
    发明申请
    System and Method for Generating Three-Dimensional Images From Two-Dimensional Bioluminescence Images and Visualizing Tumor Shapes and Locations 有权
    用于从二维生物发光图像生成三维图像并显示肿瘤形状和位置的系统和方法

    公开(公告)号:US20130070992A1

    公开(公告)日:2013-03-21

    申请号:US13545672

    申请日:2012-07-10

    IPC分类号: G06T15/00

    CPC分类号: G06T7/0012 G06T7/593

    摘要: A system and methods for generating 3D images from 2D bioluminescent images and visualizing tumor locations are provided. A plurality of 2D bioluminescent images of a subject are acquired using any suitable bioluminescent imaging system. The 2D images are registered to align each image and to compensate for differences between adjacent images. After registration, corresponding features are identified between consecutive sets of 2D images. For each corresponding feature identified in each set of 2D images, an orthographic projection model is applied, such that rays are projected through each point in the feature. The intersection points of the rays are plotted in a 3D image space. All of the 2D images are processed in the same manner, such that a resulting 3D image of a tumor is generated.

    摘要翻译: 提供了一种用于从2D生物发光图像生成3D图像并可视化肿瘤位置的系统和方法。 使用任何合适的生物发光成像系统获取对象的多个2D生物发光图像。 注册2D图像以对齐每个图像并补偿相邻图像之间的差异。 在注册之后,在连续的2D图像集之间识别相应的特征。 对于每组2D图像中识别的每个相应特征,应用正交投影模型,使得射线通过特征中的每个点投影。 将光线的交点绘制在3D图像空间中。 以相同的方式处理所有2D图像,使得产生肿瘤的所得3D图像。

    Robust click-point linking with geometric configuration context: interactive localized registration approach
    9.
    发明授权
    Robust click-point linking with geometric configuration context: interactive localized registration approach 有权
    强大的点击链接与几何配置上下文:交互式本地化注册方法

    公开(公告)号:US07903857B2

    公开(公告)日:2011-03-08

    申请号:US11705375

    申请日:2007-02-12

    CPC分类号: G06K9/4671 G06K9/6211

    摘要: Disclosed is robust click-point linking, defined as estimating a single point-wise correspondence between data domains given a user-specified point in one domain or as an interactive localized registration of a monomodal data pair. To link visually dissimilar local regions, Geometric Configuration Context (GCC) is introduced. GCC represents the spatial likelihood of the point corresponding to the click-point in the other domain. A set of scale-invariant saliency features are pre-computed for both data. GCC is modeled by a Gaussian mixture whose component mean and width are determined as a function of the neighboring saliency features and their correspondences. This allows correspondence of dissimilar parts using only geometrical relations without comparing the local appearances. GCC models are derived for three transformation classes: pure translation, scaling and translation, and similarity transformation. For solving the linking problem, a variable-bandwidth mean shift method is adapted for estimating the maximum likelihood solution of the GCC.

    摘要翻译: 公开了强大的点对点链接,定义为估计给定一个域中的用户指定点的数据域之间的单个点对应关系,或者作为单模数据对的交互式局部化注册。 为了链接视觉上不同的局部区域,引入了几何配置上下文(GCC)。 GCC表示对应于另一个域中的点击点的点的空间似然性。 对两个数据都预先计算了一组尺度不变的显着特征。 GCC由高斯混合物建模,其分量平均值和宽度被确定为邻近显着特征及其对应关系的函数。 这允许不相似部分的对应使用仅几何关系而不比较局部外观。 GCC模型是为三个转换类派生的:纯翻译,缩放和翻译,以及相似变换。 为了解决连接问题,可变带宽平均偏移方法适用于估计GCC的最大似然解。