Abstract:
A process, comprising: providing an olefin feed comprising pentenes, butenes, and isopentane; and alkylating the olefin feed with isobutane using acidic ionic liquid catalyst; wherein less than 5 mol % of C5 olefins in the olefin feed are converted to isopentane, and the alkylate gasoline has defined final boiling points and high RONs. A process comprising: alkylating an olefin feed comprising pentenes and isopentane, with isobutane using acidic ionic liquid catalyst; wherein less than 5 mol % of C5 olefins in the olefin feed are converted to isopentane; and wherein an n-pentane product yield is low. An alkylate gasoline, comprising less than 0.1 wt % olefins and aromatics, less than 1.8 wt % C12+ hydrocarbons, and greater than 60 wt % combined C8 and C9 hydrocarbons, wherein the trimethylpentane in the C8 hydrocarbons and the trimethylhexane in the C9 hydrocarbons are defined.
Abstract:
An alkylate base oil of a biological origin having a kinematic viscosity at 100° C. from 3 mm2/s to 20 mm2/s, and characterized by having a total integral of a 13C NMR spectrum wherein 25-60% of the total integral of the 13C NMR spectrum falls within 13C NMR resonances in ranges for linear long chain alkyl groups given by: C1(13.9-14.2 ppm), C2(22.6-22.8 ppm), C3(31.9-32.05 ppm), C4(29.35-29.45 ppm), and C5+(29.6-29.8 ppm).
Abstract:
A process to make an isoalkane alkylate base oil, comprising: a. oligomerizing an olefin feed having a carbon number from 3 to 6 using a metallocene catalyst to make an unsaturated olefin oligomer; and b. alkylating an isoalkane feed with the unsaturated olefin oligomer in the presence of an acidic alkylation catalyst, and without any addition of hydrogen, to make an alkylate product comprising the isoalkane alkylate base oil having a kinematic viscosity at 100° C. greater than 10 mm2/s, a VI higher than 80, and a bromine index less than 1000 mg Br/100 g.
Abstract:
A composition to be converted to a lubricant is provided. The composition comprises a mixture of at least three different long chain secondary alcohols having the following chemical structure: where R1′ and R2′ are independently selected from C5-C21 linear or branched alkyls.
Abstract:
An alkylate base oil of a biological origin having a kinematic viscosity at 100° C. from 3 mm2/s to 20 mm2/s, and characterized by having a total integral of a 13C NMR spectrum wherein 25-60% of the total integral of the 13C NMR spectrum falls within 13C NMR resonances in ranges for linear long chain alkyl groups given by: C1(13.9-14.2 ppm), C2(22.6-22.8 ppm), C3(31.9-32.05 ppm), C4(29.35-29.45 ppm), and C5+(29.6-29.8 ppm).
Abstract:
An isoalkane alkylate base oil and a process to make an isoalkane alkylate base oil having a VI higher than 90, comprising: a. selecting an isoalkane feed containing at least one isoalkane and an olefin feed containing at least one linear olefin such that a combined carbon number of the isoalkane feed and the olefin feed is from 20 to 60; and b. alkylating the isoalkane feed with the olefin feed in the presence of an acidic alkylation catalyst under alkylation conditions to make the isoalkane alkylate base oil having the VI higher than 90; wherein the isoalkane alkylate base oil has a kinematic viscosity at 100° C. from 2 to 30 mm2/s, a pour point less than 0° C., and a bromine index less than 2000 mg Br/100 g.
Abstract:
An alkylate base oil of biological origin and a process to make an alkylate base oil comprising: a) hydrogenating a farnesene to make a farnesane comprising from zero to less than 5 wt % unsaturated molecules; and b) alkylating the farnesane with one or more C6 to C43 olefins in the presence of an acidic alkylation catalyst to make the alkylate base oil having a kinematic viscosity at 100° C. from 3 mm2/s to 20 mm2/s.
Abstract:
An alkylate base oil of biological origin and a process to make an alkylate base oil comprising: a) hydrogenating a farnesene to make a farnesane comprising from zero to less than 5 wt % unsaturated molecules; and b) alkylating the farnesane with one or more C6 to C43 olefins in the presence of an acidic alkylation catalyst to make the alkylate base oil having a kinematic viscosity at 100° C. from 3 mm2/s to 20 mm2/s.
Abstract:
A process involves sequentially treating a plurality of lipid feedstocks comprising a set of lipid feedstocks each having a chloride content of at least about 2 ppm with a metal oxide catalyst on an oxide support under first treating conditions to produce respective treated streams of the set of lipid feedstocks having a chloride content less than 1 ppm until a given one of the respective treated streams has a chloride content greater than 1 ppm and the metal oxide catalyst is converted to a spent metal oxide catalyst, converting the spent metal oxide catalyst to a rejuvenated metal oxide catalyst, and treating one or more additional lipid feedstocks each having a chloride content of at least about 2 ppm with the rejuvenated metal oxide catalyst under second treating conditions to produce one or more respective treated streams each having a chloride content less than 1 ppm.