Abstract:
Paraffin compositions including mainly even carbon number paraffins, and a method for manufacturing the same, is disclosed herein. In one embodiment, the method involves contacting naturally occurring fatty acid/glycerides with hydrogen in a slurry bubble column reactor containing bimetallic catalysts with equivalent particle diameters from about 10 to about 400 micron. The even carbon number compositions are particularly useful as phase change material.
Abstract:
This invention relates to processes for making bio-based renewable oils from non-food biomass sources. Such renewable oils are used for cosmetics formulations. More specifically, disclosed are processes of preparation of furan-based compounds of the formula: (R1-A)a—CH(R2)—CH2—CH(R3)(A-R1)b wherein: a and b are independently 1 or 2 and 0 or 1; A is: independently an unsaturated, a partially hydrogenated, or a fully hydrogenated saturated fur an ring; —(CH2)4—; a saturated fur an ring-opened moiety containing a hydroxyl or a ketonic group: —CH2—CH2—CH2—CH2—OH or —CH2—CH2—CH2—CH═O; or a partially saturated furan-ring opened moiety containing a hydroxyl or a ketonic group: —CH2—CH2—CH═CH—OH or —CH2—CH═CH—CH═O where the position of the double bond is anywhere within the chain; R1, R2, and R3 are: independently selected from H, a furan ring, a tetrahydrofuran ring and alkyl groups having carbon atoms of 1 to 18; and the total carbon content of the compound is from 10 to 40.
Abstract:
A system and a method are provided for an axial flow through chemical reactor that provides for the separation of hydrogen from a hydrocarbon feedstock and to form longer chain hydrocarbon molecules. The system consists of a radial magnetic field and an axial electric field in a cylindrical device, and a method of exciting flow through gas molecules by means of Lorentz Force to cause centrifugal force on the gas stream in the radial direction, inducing high molecular sheer in the rotating gas stream causes hydrogen to be removed from the rotating gas column, high molecular density forces radical hydrocarbon molecules to combine in the absence of Hydrogen.
Abstract:
Provided are fuel components, a method for producing fuel components, use of the fuel components and fuel containing the fuel components based on 5-nonanone.
Abstract:
Methods of making branched isoparaffin compositions derived from natural oil based linear internal olefins are disclosed. Uses of branched isoparaffins formed by such methods are also disclosed.
Abstract:
A tandem organic light-emitting diode, an array substrate and a display device are provided. The tandem organic light-emitting diode includes an anode, a hole transport layer, a first light-emitting layer, a first charge generation layer, a second charge generation layer, a third charge generation layer, a fourth charge generation layer, a second light-emitting layer, an electron transport layer and a cathode which are sequentially laminated, wherein the first charge generation layer is an N-type bulk heterojunction, the second charge generation layer and the third charge generation layer are both PN junction type bulk heterojunctions, a proportion of the P-type organic material in the second charge generation layer is greater than that of the N-type organic material, a proportion of the P-type organic material in the third charge generation layer is less than that of the N-type organic material, and the fourth charge generation layer is a P-type bulk heterojunction.
Abstract:
A process may include contacting an olefin monomer and a racemic bridged metallocene catalyst at a temperature of 80° C. to 150° C. in the presence of hydrogen. The racemic bridged metallocene catalyst may include a metallocene compound (A) and an activator component (B). The process may include recovering an effluent containing polyalpha-olefins (PAOs). The metallocene compound (A) may be represented by the formula R(Cp1)(Cp2)MX1X2. In the formula, R may be a C1-C20 alkylene bridging group; Cp1 and Cp2 may be the same or different substituted or unsubstituted tetrahydroindenyl rings; M may be a transition metal; and X1 and X2 may be independently selected from hydrogen, halogen, hydride radicals, hydrocarbyl radicals, substituted hydrocarbyl radicals, halocarbyl radicals, substituted halocarbyl radicals, silylcarbyl radicals, substituted silylcarbyl radicals, germylcarbyl radicals, substituted germylcarbyl radicals.
Abstract:
Uses for a family of new crystalline molecular sieves designated SSZ-91 are disclosed. Molecular sieve SSZ-91 is structurally similar to sieves falling within the ZSM-48 family of molecular sieves, and is characterized as: (1) having a low degree of faulting, (2) a low aspect ratio that inhibits hydrocracking as compared to conventional ZSM-48 materials having an aspect ratio of greater than 8, and (3) is substantially phase pure.
Abstract:
The present invention relates to a bifunctional catalyst for a hydrodewaxing process with improved isomerization selectivity, and to a method for manufacturing the same, and more particularly to a bifunctional catalyst and to a method for manufacturing same, which is characterized in that EU-2 zeolite with a controlled degree of phase transformation is used as a catalyst support having an acid site. The EU-2 zeolite, the degree of phase transformation of which is controlled, includes, by controlling synthesis parameters of EU-2, predetermined amounts of materials that are phase-transformed from EU-2 crystals such as cristobalite and quartz. The metal loaded bifunctional catalyst according to the present invention improves selectivity of the isomerization process, rather than a cracking reaction, during a hydroisomerization reaction of n-hexadecane. Therefore, the bifunctional catalyst can be widely used as a catalyst for a dewaxing process such as lubricant base oil and diesel oil.
Abstract:
In one preferred embodiment, the present invention provides a process for the liquid phase polymerization of isobutylene to manufacture highly reactive PIB oligomers having Mn under 1000, using a catalyst composition comprising a Friedel-Crafts catalyst a complexing agent, a chain transfer agent and a polymerization-retarding agent. A chain transfer agent may be selected from: α-DIB and β-DIB and mixtures thereof. A polymerization-retarding agent may be selected from: