摘要:
A laser processing apparatus for cutting substrates comprises a laser head for generating a laser beam and first and second work holders on which substrates are mountable. A diverter positioned along a path of the laser beam is operative to selectively direct the laser beam towards a first substrate mounted on the first work holder to cut the first substrate, or towards a second substrate mounted on the second work holder to cut the second substrate, so that contemporaneous operations may be conducted on one substrate while the other substrate is being cut.
摘要:
Disclosed is a singulation apparatus, comprising: at least one chuck station to which a workpiece is securable, the at least one chuck station being configured to move along a feed direction; a bridge extending above the at least one chuck station, the bridge having a first side and a second side opposite the first side; a first cutting device members mounted to the bridge and being independently movable along the first side, transversely to the feed direction; and a second cutting device members mounted to the bridge and being independently movable along the second side, transversely to the feed direction, the first and second cutting devices being for cutting the workpiece. A singulation method is also disclosed.
摘要:
A laser processing method is disclosed, comprising the steps of: directing a laser beam to a workpiece; and effecting a relative motion between the laser beam and the workpiece. In particular, the step of directing the laser beam to the workpiece comprises focusing the laser beam within the workpiece until an internal damage forms within the workpiece and a crack propagates from the internal damage to at least one surface of the workpiece to form a surface crack on the workpiece. Further, the step of effecting the relative motion between the laser beam and the workpiece is such that the surface crack on the workpiece propagates along a line of separation on the workpiece. A laser processing apparatus is also disclosed.
摘要:
An apparatus for supporting a workpiece during processing of the workpiece is disclosed. The apparatus comprises: a chassis having a vacuum chamber that is connectable to a vacuum source; a supporting device rotatable relative to the chassis, the supporting device having a hollow compartment and a supporting surface for holding the workpiece; and at least one sealing device arranged between the chassis and the supporting device, to provide an air-tight seal between the chassis and the supporting device while allowing for rotation of the supporting device with respect to the chassis, so as to form a vacuum passage extending from the supporting surface of the supporting device through the hollow compartment of the supporting device and the vacuum chamber of the chassis to the vacuum source, to thereby hold the workpiece to the supporting surface of the supporting device during processing of the workpiece.
摘要:
A method of configuring a dicing device 101, which dices along a cutting line of a workpiece 111 according to a dicing step, is disclosed. Numerical input of a dicing order of the dicing device 101 to dice a workpiece 111 is time-consuming and prone to errors. The disclosed method comprises the step of depicting a graphical user interface 202, which includes a layout 203 of the workpiece 111 that further includes a plurality of cut lines relating to respective cutting lines along the workpiece 111. The disclosed method further comprises the step of graphically contacting a cut line from the layout 203 through a user-interface device 201, to allow selection of the cut line before the selected cut line is assigned to the dicing step of the dicing device 101. By providing the plurality of cut lines in the layout 203 that are graphically contactable through the user-interface device 201, the method advantageously allows an easier process of configuring the dicing step of the dicing device 101. Also disclosed are a dicing apparatus for dicing a workpiece 111, as well as a computer-readable medium having a computer program for instructing a computer to perform the disclosed method.
摘要:
A method for determining cutting lines for a substrate prior to its singulation is provided whereby the substrate comprises first and second rows of alignment marks which are substantially parallel to each other such that a pair of alignment marks each from the first and second rows of alignment marks is configured for determining a position of a cutting line. The method comprises the steps of positioning the first row of alignment marks along a relative motion path of a first camera and positioning the second row of alignment marks along a relative motion path of a second camera. While the substrate is being moved relative to the first and second cameras along the respective relative motion paths without stopping, the first and second cameras capture images of multiple pairs of alignment marks from the first and second rows of alignment marks during such motion. Thereafter, the position of each cutting line is determined from the images of each pair of alignment marks along the first and second rows of alignment marks relating to the cutting line and stored in a storage device for use during singulation.
摘要:
Disclosed is an apparatus for handling electronic components. The apparatus comprises: i) a rotary device and a plurality of pick heads arranged circumferentially around the rotary device, each pick head being operable to hold an electronic component; ii) a position-determining device for determining an arrangement of the electronic components as held by the respective pick heads; iii) a fiducial mark arranged in a position that is indicative of the arrangement of the electronic components, as determined by the position-determining device; iv) a first imaging device arranged relative to the fiducial mark; and v) at least one handling device for handling the electronic components. Specifically, the first imaging device is operable to capture at least one image comprising the fiducial mark and the at least one handling device so that a position of the at least one handling device is adjustable to align the at least one handling device with respect to the arrangement of the electronic components, based on an offset between the fiducial mark and the at least one handling device as derived from the at least one image captured by the first imaging device. A method of adjusting the position of at least one handling device of an apparatus for handling electronic components is also disclosed.
摘要:
A nozzle device comprising a nozzle chamber includes a fluid inlet located at a first side of the nozzle chamber which is operative to introduce fluid into the nozzle chamber in an injection direction and a fluid outlet at a second side of the nozzle chamber which is operative to expel fluid from the nozzle chamber. A high frequency wave generator is also located in the nozzle chamber which is oriented and operative to generate high frequency waves in a direction which is substantially parallel to the injection direction, whereby to impart high frequency energy to the fluid in the nozzle chamber.
摘要:
Disclosed is a transfer apparatus for transferring electronic devices from a wafer to a test handler. The transfer apparatus comprises: i) a rotary device rotatable about an axis; and ii) a plurality of holders configured to hold the electronic devices for transfer from the wafer to the test handler. The plurality of holders are coupled to, and extendable from, the rotary device to pick the electronic devices from the wafer. Specifically, the plurality of holders are arranged circumferentially around, and inclined with respect to, the axis of the rotary device, so as to change an orientation of the electronic devices on the wafer to a desired orientation of the electronic devices on the test handler.
摘要:
A testing apparatus for electronic components comprises a mounting block and a plurality of contact strips arranged on the mounting block. The contact strips are configured such that electrical leads of an electronic component are operative to press against and bend the contact strips in a biasing direction to ensure good contact between the electrical leads and the contact strips during testing of the electronic component. Further, a preload block located on the mounting block is operative to contact and apply a pre-stress force onto the contact strips in the biasing direction prior to contact between the electrical leads and the contact strips.