摘要:
A method and system for isolation trenches includes forming isolation trenches in a semiconductor substrate, filling the trenches with a filler material, creating voids near top edges of the trenches and annealing by a gaseous ambient to reflow the edges of the trenches causing the edges to become rounded and overhang the trench. The filler material may be a dielectric. Transistors are then formed in close proximity to the trenches and may include source/drain regions formed in the rounded portion of the semiconductor substrate that overhangs the trench.
摘要:
A semiconductor device provides a transistor adjacent an isolation trench. The device may be formed by producing isolation trenches in a semiconductor substrate, filling the trenches with a filler material, creating voids near top edges of the trenches and annealing by a gaseous ambient to reflow the edges of the trenches causing the edges to become rounded and overhang the trench. The filler material may be a dielectric. The transistors which are then formed in close proximity to the trenches may include source/drain regions formed in the rounded portion of the semiconductor substrate that overhangs the trench.
摘要:
A semiconductor device provides a transistor adjacent an isolation trench. The device may be formed by producing isolation trenches in a semiconductor substrate, filling the trenches with a filler material, creating voids near top edges of the trenches and annealing by a gaseous ambient to reflow the edges of the trenches causing the edges to become rounded and overhang the trench. The filler material may be a dielectric. The transistors which are then formed in close proximity to the trenches may include source/drain regions formed in the rounded portion of the semiconductor substrate that overhangs the trench.
摘要:
A method of improving the carrier mobility of a transistor is presented. A trench is formed in a substrate. The trench is filled with a dielectric. A CMOS transistor is formed adjacent to the trench. A silicide layer is formed on the source/drain region. After the step of forming the silicide layer, a recess is formed by etching the dielectric so that the surface of the dielectric is substantially lower than the surface of the substrate. Recessing the STI causes the removal of the compressive stress applied to the channel region by the STI material. A contact etch stop layer (CESL) is formed over the gate electrode, spacers, source/drain region and the dielectric. The CESL applies a desired stress to the channel region. Trench liners may optionally be formed to provide a stress to the channel region. A trench spacer may optionally be formed in the STI recess.
摘要:
A method and system for isolation trenches includes forming isolation trenches in a semiconductor substrate, filling the trenches with a filler material, creating voids near top edges of the trenches and annealing by a gaseous ambient to reflow the edges of the trenches causing the edges to become rounded and overhang the trench. The filler material may be a dielectric. Transistors are then formed in close proximity to the trenches and may include source/drain regions formed in the rounded portion of the semiconductor substrate that overhangs the trench.
摘要:
A method of improving the carrier mobility of a transistor is presented. A trench is formed in a substrate. The trench is filled with a dielectric. A CMOS transistor is formed adjacent to the trench. A silicide layer is formed on the source/drain region. After the step of forming the silicide layer, a recess is formed by etching the dielectric so that the surface of the dielectric is substantially lower than the surface of the substrate. Recessing the STI causes the removal of the compressive stress applied to the channel region by the STI material. A contact etch stop layer (CESL) is formed over the gate electrode, spacers, source/drain region and the dielectric. The CESL applies a desired stress to the channel region. Trench liners may optionally be formed to provide a stress to the channel region. A trench spacer may optionally be formed in the STI recess.
摘要:
A method of improving transistor carrier mobility by adjusting stress through recessing shallow trench isolation is presented. A trench is formed in a substrate. The trench is filled with a dielectric. A CMOS transistor is formed adjacent to the trench. A silicide layer is formed on the source/drain region. A recess is formed by etching the dielectric so that the surface of the dielectric is substantially lower than the surface of the substrate. Recessing the STI removes the compressive stress applied to the channel region by the STI material. A contact etch stop layer (CESL) is formed over the gate electrode, spacers, source/drain regions and the dielectric. The CESL applies a desired stress to the channel region. Trench liners are optionally formed to provide a stress to the channel region. A spacer can optionally be formed in the STI recess.
摘要:
A method of improving transistor carrier mobility by adjusting stress through recessing shallow trench isolation is presented. A trench is formed in a substrate. The trench is filled with a dielectric. A CMOS transistor is formed adjacent to the trench. A silicide layer is formed on the source/drain region. A recess is formed by etching the dielectric so that the surface of the dielectric is substantially lower than the surface of the substrate. Recessing the STI removes the compressive stress applied to the channel region by the STI material. A contact etch stop layer (CESL) is formed over the gate electrode, spacers, source/drain regions and the dielectric. The CESL applies a desired stress to the channel region. Trench liners are optionally formed to provide a stress to the channel region. A spacer can optionally be formed in the STI recess.
摘要:
A semiconductor device 10 includes a substrate 12 (e.g., a silicon substrate) with an insulating layer 14 (e.g., an oxide such as silicon dioxide) disposed thereon. A first semiconducting material layer 16 (e.g., SiGe) is disposed on the insulating layer 14 and a second semiconducting material layer 18 (e.g., Si) is disposed on the first semiconducting material layer 16. The first and second semiconducting material layers 16 and 18 preferably have different lattice constants such that the first semiconducting material layer 16 is compressive and the second semiconducting material layer is tensile 18.
摘要:
A complementary FET and a method of manufacture is provided. The complementary FET utilizes a substrate having a surface layer with a crystal orientation. Tensile stress, which increases performance of the NMOS FETs, is added by silicided source/drain regions, tensile-stress film, shallow trench isolations, inter-layer dielectric, or the like.