摘要:
A method for forming a semiconductor device and a device made using the method are provided. In one example, the method includes forming a hard mask layer on a semiconductor substrate and patterning the hard mask layer to form multiple openings. The substrate is etched through the openings to form forming a plurality of trenches separating multiple semiconductor mesas. The trenches are partially filled with a dielectric material. The hard mask layer is removed and multiple-gate features are formed, with each multiple-gate feature being in contact with a top surface and sidewalls of at least one of the semiconductor mesas.
摘要:
A method for forming a semiconductor device and a device made using the method are provided. In one example, the method includes forming a hard mask layer on a semiconductor substrate and patterning the hard mask layer to form multiple openings. The substrate is etched through the openings to form forming a plurality of trenches separating multiple semiconductor mesas. The trenches are partially filled with a dielectric material. The hard mask layer is removed and multiple-gate features are formed, with each multiple-gate feature being in contact with a top surface and sidewalls of at least one of the semiconductor mesas.
摘要:
A semiconductor structure fabricating method includes the following steps. Firstly, a silicon substrate is provided. The silicon substrate has a first surface and a second surface. In addition, a first semiconductor structure is formed on the first surface of the silicon substrate. Then, the second surface of the silicon substrate is textured as a rough surface. Then, a first electrode layer is formed on the rough surface.
摘要:
A memory device includes a phase change element, which further includes a first phase change layer having a first grain size; and a second phase change layer over the first phase change layer. The first and the second phase change layers are depth-wise regions of the phase change element. The second phase change layer has a second average grain size different from the first average grain size.
摘要:
A method provides for dicing a wafer having a base material with a diamond structure. The wafer first undergoes a polishing process, in which a predetermined portion of the wafer is polished away from its back side. The wafer is then diced through at least one line along a direction at a predetermined offset angle from a natural cleavage direction of the diamond structure. A wafer is produced with one or more dies formed thereon with at least one of its edges at an offset angle from a natural cleavage direction of a diamond structure of a base material forming the wafer. At least one dicing line has one or more protection elements for protecting the dies from undesired cracking while the wafer is being diced along the dicing line.
摘要:
A method for making a dual silicide or germanide semiconductor comprises steps of providing a semiconductor substrate, forming a gate, forming source/drain regions, forming a first silicide, reducing spacers thickness and forming a second silicide. Forming a gate comprises forming an insulating layer over the semiconductor substrate, and forming the gate over the insulating layer. Forming source/drain regions comprises forming lightly doped source/drain regions in the semiconductor substrate adjacent to the insulating layer, forming spacers adjacent to the gate and over part of the lightly doped source/drain regions, and forming heavily doped source/drain regions in the semiconductor substrate. The first silicide is formed on an exposed surface of lightly and heavily doped source/drain regions. The second silicide is formed on an exposed surface of lightly doped source/drain regions. A first germanide and second germanide may replace the first silicide and the second silicide.
摘要:
The present disclosure provides a memory cell. The memory cell includes a first electrode, a variable resistive material layer coupled to the first electrode, a metal oxide layer coupled the variable resistive material layer; and a second electrode coupled to the metal oxide layer. In an embodiment, the metal oxide layer provides a constant resistance.
摘要:
A method for manufacturing a metal gate includes providing a substrate including a gate electrode located on the substrate. A plurality of layers is formed, including a first layer located on the substrate and the gate electrode and a second layer adjacent the first layer. The layers are etched to form a plurality of adjacent spacers, including a first spacer located on the substrate and adjacent the gate electrode and a second spacer adjacent the first spacer. The first spacer is then etched and a metal layer is formed on the device immediately adjacent to the gate electrode. The metal layer is then reacted with the gate electrode to form a metal gate.
摘要:
A phase change memory is provided. The method includes forming contact plugs in a first dielectric layer. A second dielectric layer is formed overlying the first dielectric layer and a trench formed therein exposing portions of the contact plugs. A metal layer is formed over surfaces of the trench. One or more heaters are formed from the metal layer such that each heater is formed along one or more sidewalls of the trench, wherein the portion of the heater along the sidewalls does not include a corner region of adjacent sidewalls. The trench is filled with a third dielectric layer, and a fourth dielectric layer is formed over the third dielectric layer. Trenches are formed in the fourth dielectric layer and filled with a phase change material. An electrode is formed over the phase change material.
摘要:
A selectively strained MOS device such as selectively strained PMOS device making up an NMOS and PMOS device pair without affecting a strain in the NMOS device the method including providing a semiconductor substrate comprising a lower semiconductor region, an insulator region overlying the lower semiconductor region and an upper semiconductor region overlying the insulator region; patterning the upper semiconductor region and insulator region to form a MOS active region; forming an MOS device comprising a gate structure and a channel region on the MOS active region; and, carrying out an oxidation process to oxidize a portion of the upper semiconductor region to produce a strain in the channel region.