摘要:
An organic electroluminescent (OEL) lighting element disposed on a substrate includes a first electrode, a second electrode, an OEL layer, an auxiliary electrode, a patterned scattering layer, and a patterned dielectric layer. The second electrode is opposite to the first electrode having a first refraction index. The OEL layer is disposed between the first electrode and the second electrode. The auxiliary electrode is disposed between the first electrode and the second electrode, electrically connected to the first electrode, and separated from the OEL layer by a gap. The patterned scattering layer is disposed between the first electrode and the auxiliary electrode, covers the auxiliary electrode, and has a second refraction index greater than or substantially equal to the first refraction index. The patterned dielectric layer is disposed between the auxiliary electrode and the second electrode, covers the auxiliary electrode, and is disposed between the auxiliary electrode and the OEL layer.
摘要:
An organic electroluminescent (OEL) lighting element disposed on a substrate includes a first electrode, a second electrode, an OEL layer, an auxiliary electrode, a patterned scattering layer, and a patterned dielectric layer. The second electrode is opposite to the first electrode having a first refraction index. The OEL layer is disposed between the first electrode and the second electrode. The auxiliary electrode is disposed between the first electrode and the second electrode, electrically connected to the first electrode, and separated from the OEL layer by a gap. The patterned scattering layer is disposed between the first electrode and the auxiliary electrode, covers the auxiliary electrode, and has a second refraction index greater than or substantially equal to the first refraction index. The patterned dielectric layer is disposed between the auxiliary electrode and the second electrode, covers the auxiliary electrode, and is disposed between the auxiliary electrode and the OEL layer.
摘要:
A fabricating method of a flexible display is provided. A release layer is formed on a carrier substrate. The release layer is patterned to form a patterned release layer. A flexible substrate is formed on the patterned release layer, wherein the flexible substrate covers the patterned release layer and a portion of the flexible substrate contacts the carrier substrate. An adhesive force between the patterned release layer and the flexible substrate is larger than an adhesive force between the patterned release layer and the carrier substrate. A device layer is formed on the flexible substrate. A display layer is formed on the device layer. The flexible substrate and patterned release layer are cut simultaneously. The patterned release layer being cut is separated from the carrier substrate, wherein the flexible substrate, the device layer and the display layer which have been cut are sequentially disposed on the separated patterned release layer.
摘要:
A fabricating method of a flexible display is provided. A release layer is formed on a carrier substrate. The release layer is patterned to form a patterned release layer. A flexible substrate is formed on the patterned release layer, wherein the flexible substrate covers the patterned release layer and a portion of the flexible substrate contacts the carrier substrate. An adhesive force between the patterned release layer and the flexible substrate is larger than an adhesive force between the patterned release layer and the carrier substrate. A device layer is formed on the flexible substrate. A display layer is formed on the device layer. The flexible substrate and patterned release layer are cut simultaneously. The patterned release layer being cut is separated from the carrier substrate, wherein the flexible substrate, the device layer and the display layer which have been cut are sequentially disposed on the separated patterned release layer.
摘要:
A flexible organic light emitting device includes a flexible substrate, an organic light emitting unit and a covering substrate. The organic light emitting unit includes a first electrode layer, a second electrode layer opposing the first electrode, and a light emitting layer, which is disposed between the first and second electrode layers. The covering substrate includes a base film, an insulation layer and an adhesion layer. An inner surface of the base film is facing an inner surface of the flexible substrate, and space is formed there-between. The insulation layer is disposed on the inner surface of the base film, and an adhesive force between the insulation layer and the organic light emitting unit is less than 0.1 N/cm. The adhesion layer is disposed between the insulation layer and the inner surface of the base film, covers the insulation layer and the organic light emitting unit, and fills the space.
摘要:
A flexible organic light emitting device includes a flexible substrate, an organic light emitting unit and a covering substrate. The organic light emitting unit includes a first electrode layer, a second electrode layer opposing the first electrode, and a light emitting layer, which is disposed between the first and second electrode layers. The covering substrate includes a base film, an insulation layer and an adhesion layer. An inner surface of the base film is facing an inner surface of the flexible substrate, and space is formed there-between. The insulation layer is disposed on the inner surface of the base film, and an adhesive force between the insulation layer and the organic light emitting unit is less than 0.1 N/cm. The adhesion layer is disposed between the insulation layer and the inner surface of the base film, covers the insulation layer and the organic light emitting unit, and fills the space.
摘要:
A light emitting device includes a substrate, a patterned light-scattering layer, and an electroluminescent device. The patterned light-scattering layer is disposed on a portion of the substrate. The patterned light-scattering layer has a bottom surface in contact with the substrate, a top surface opposite to the bottom surface, and a plurality of sidewalls connecting the bottom surface and the top surface. The electroluminescent device is at least disposed on the sidewalls.
摘要:
A light emitting device includes a substrate, a patterned light-scattering layer, and an electroluminescent device. The patterned light-scattering layer is disposed on a portion of the substrate. The patterned light-scattering layer has a bottom surface in contact with the substrate, a top surface opposite to the bottom surface, and a plurality of sidewalls connecting the bottom surface and the top surface. The electroluminescent device is at least disposed on the sidewalls.
摘要:
A thin film transistor (TFT) with a self-aligned lightly-doped region and a fabrication method thereof. An active layer has a channel region, a first doped region and a second doped region, in which the first doped region is disposed between the channel region and the second doped region. A gate insulating layer formed overlying the active layer has a central region, a shielding region and an extending region. The shielding region is disposed between the central region and the extending region, the central region covers the channel region, the shielding region covers the first doped region, and the extending region covers the second doped region. The shielding region is thicker than the extending region. A gate layer is formed overlying the gate insulating layer, covers the central region and exposes the shielding region and the extending region.
摘要:
An active matrix organic electro-luminescence device array comprising first sub-pixel regions and second sub-pixel regions defined by scan lines and data lines is provided. Each first sub-pixel region has a first light emitting device, a first control unit and a second control unit therein while each second sub-pixel region has a second light emitting device therein. The first control unit is electrically connected to the first light emitting device for driving the first light emitting device. The second control unit is electrically connected to the second light emitting device for driving the second light emitting device. The second light emitting device having poor light emitting efficiency per unit area is disposed in the second sub-pixel region for increasing its light emitting area so that the first and second light emitting devices may have uniform brightness when drive with the same driving current.