摘要:
A receiving circuit is provided for receiving a data signal and a clock signal, which are RSDS signals, and outputting an output data signal to a data driver. The receiving circuit includes a data comparator, a data intermediate circuit, a clock comparator, a clock intermediate, and a flip-flop. The data comparator, driven with a data bias current, receives the data signal, and outputs a compared data signal. The clock comparator, driven with a clock bias current, receives the clock signal, and outputs a compared clock signal. The flip-flop receives the compared data signal via the data intermediate circuit and the compared clock signal via the clock intermediate circuit. The phase difference between the compared data signal and the compared clock signal is improved by adjusting the data and the clock bias currents.
摘要:
A receiving circuit is provided for receiving a data signal and a clock signal, which are RSDS signals, and outputting an output data signal to a data driver. The receiving circuit includes a data comparator, a data intermediate circuit, a clock comparator, a clock intermediate, and a flip-flop. The data comparator, driven with a data bias current, receives the data signal, and outputs a compared data signal. The clock comparator, driven with a clock bias current, receives the clock signal, and outputs a compared clock signal. The flip-flop receives the compared data signal via the data intermediate circuit and the compared clock signal via the clock intermediate circuit. The phase difference between the compared data signal and the compared clock signal is improved by adjusting the data and the clock bias currents.
摘要:
The invention discloses a driving apparatus for driving an LCD. The driving apparatus comprises a voltage control unit, an operating unit, a resistance unit, and a voltage selection unit. The operating unit comprises two sets of buffers formed by a plurality of operational amplifiers in negative feedback circuit. The two sets of buffers selectively receive positive polarity voltages and negative polarity voltages respectively. The voltage selection unit is provided with the positive polarity voltages and negative polarity voltages through the operating unit and the resistance unit. The voltage selection unit selectively provides the pixels of the LCD with the positive polarity voltage and the negative polarity voltage. Accordingly, each of the pixels is provided either with the positive polarity voltages or the negative polarity voltages by one of the two sets of buffers.
摘要:
The invention discloses a driving apparatus for driving an LCD. The driving apparatus comprises a voltage control unit, an operating unit, a resistance unit, and a voltage selection unit. The operating unit comprises two sets of buffers formed by a plurality of operational amplifiers in negative feedback circuit. The two sets of buffers selectively receive positive polarity voltages and negative polarity voltages respectively. The voltage selection unit is provided with the positive polarity voltages and negative polarity voltages through the operating unit and the resistance unit. The voltage selection unit selectively provides the pixels of the LCD with the positive polarity voltage and the negative polarity voltage. Accordingly, each of the pixels is provided either with the positive polarity voltages or the negative polarity voltages by one of the two sets of buffers.
摘要:
An alternating phase shift mask with dark loops thereon, a memory array fabricated with the alternating phase shift mask, and a method of fabricating the memory. The dark loops in the mask always separate first regions with 180° phase difference from second regions with 0° phase difference to define active areas or gate-lines in a DRAM chip.
摘要:
An alternating phase shift mask with dark loops thereon, a memory array fabricated with the alternating phase shift mask, and a method of fabricating the memory. The dark loops in the mask always separate first regions with 180° phase difference from second regions with 0° phase difference to define active areas or gate-lines in a DRAM chip. By using the alternating phase shift mask to pattern gate-lines or active areas in a DRAM array, no unwanted image is created in the DRAM array and only one exposure is needed to achieve high resolution requirement.
摘要:
An alternating phase shift mask with dark loops thereon, a memory array fabricated with the alternating phase shift mask, and a method of fabricating the memory. The dark loops in the mask always separate first regions with 180° phase difference from second regions with 0° phase difference to define active areas or gate-lines in a DRAM chip. By using the alternating phase shift mask to pattern gate-lines or active areas in a DRAM array, no unwanted image is created in the DRAM array and only one exposure is needed to achieve high resolution requirement.
摘要:
An alternating phase shift mask with dark loops thereon, a memory array fabricated with the alternating phase shift mask, and a method of fabricating the memory. The dark loops in the mask always separate first regions with 180° phase difference from second regions with 0° phase difference to define active areas or gate-lines in a DRAM chip. By using the alternating phase shift mask to pattern gate-lines or active areas in a DRAM array, no unwanted image is created in the DRAM array and only one exposure is needed to achieve high resolution requirement.
摘要:
An alternating phase shift mask with dark loops thereon, a memory array fabricated with the alternating phase shift mask, and a method of fabricating the memory. The dark loops in the mask always separate first regions with 180° phase difference from second regions with 0° phase difference to define active areas or gate-lines in a DRAM chip. By using the alternating phase shift mask to pattern gate-lines or active areas in a DRAM array, no unwanted image is created in the DRAM array and only one exposure is needed to achieve high resolution requirement.