摘要:
A method of forming MOS devices is provided. The method includes providing a semiconductor substrate, forming a gate dielectric over the semiconductor substrate, forming a gate electrode over the gate dielectric, forming a source/drain region in the semiconductor substrate, forming an additional layer, preferably by epitaxial growth, on the source/drain region, and siliciding at least a top portion of the additional layer. The additional layer compensates for at least a portion of the semiconductor material lost during manufacturing processes and increases the distance between the source/drain silicide and the substrate. As a result, the leakage current is reduced. A transistor formed using the preferred embodiment preferably includes a silicide over the gate electrode wherein the silicide extends beyond a sidewall boundary of the gate electrode.
摘要:
A method of forming MOS devices is provided. The method includes providing a semiconductor substrate, forming a gate dielectric over the semiconductor substrate, forming a gate electrode over the gate dielectric, forming a source/drain region in the semiconductor substrate, forming an additional layer, preferably by epitaxial growth, on the source/drain region, and siliciding at least a top portion of the additional layer. The additional layer compensates for at least a portion of the semiconductor material lost during manufacturing processes and increases the distance between the source/drain silicide and the substrate. As a result, the leakage current is reduced. A transistor formed using the preferred embodiment preferably includes a silicide over the gate electrode wherein the silicide extends beyond a sidewall boundary of the gate electrode.
摘要:
A method of preparing a silicon layer or substrate surface for growing an epitaxial layer of SiGe thereon. The process comprises removing native oxide from the surface of the silicon with an HF solution, and then oxidizing the exposed silicon surface to form a chemically formed layer of silicon oxide of the process damaged silicon surface. The chemically formed layer of silicon oxide is then removed by a second HF cleaning process so as to leave a smooth silicon surface suitable for growing a SiGe layer.
摘要:
A method for manufacturing a semiconductor device includes providing a substrate comprising silicon, cleaning the substrate, performing a first low pressure chemical vapor deposition (LPCVD) process using a first source gas to selectively deposit a seeding layer of silicon (Si) over the substrate, performing a second LPCVD process using a second source gas to selectively deposit a first layer of silicon germanium (SiGe) over the layer of Si, the second source gas including hydrochloride at a first flow rate, and performing a third LPCVD process using a third source gas including hydrochloride at a second flow rate. The first flow rate is substantially lower than the second flow rate.
摘要:
A method of reducing the pattern-loading effect for selective epitaxial growth. The method includes the steps of: forming a mask layer over a substrate; forming an isolation region in the substrate isolating an active region and a dummy active region; removing at least a portion of the mask layer in the active region and thus forming a first opening, the substrate being exposed through the first opening; removing at least a portion of the mask layer in the dummy active region and thus forming a second opening, the substrate being exposed through the second opening; and performing selective epitaxial growth simultaneously on the substrate in the first opening and second openings. By introducing the second opening wherein epitaxial growth occurs, the pattern density is more uniform and thus the pattern-loading effect is reduced.
摘要:
A method of preparing a silicon layer or substrate surface for growing an epitaxial layer of SiGe thereon. The process comprises removing native oxide from the surface of the silicon with an HF solution, and then oxidizing the exposed silicon surface to form a chemically formed layer of silicon oxide of the process damaged silicon surface. The chemically formed layer of silicon oxide is then removed by a second HF cleaning process so as to leave a smooth silicon surface suitable for growing a SiGe layer.
摘要:
A method for manufacturing a semiconductor device includes providing a substrate comprising silicon, cleaning the substrate, performing a first low pressure chemical vapor deposition (LPCVD) process using a first source gas to selectively deposit a seeding layer of silicon (Si) over the substrate, performing a second LPCVD process using a second source gas to selectively deposit a first layer of silicon germanium (SiGe) over the layer of Si, the second source gas including hydrochloride at a first flow rate, and performing a third LPCVD process using a third source gas including hydrochloride at a second flow rate. The first flow rate is substantially lower than the second flow rate.
摘要:
A high voltage metal-oxide-semiconductor transistor device includes a substrate, at least an isolation structure formed in the substrate, a gate formed on the substrate, and a source region and a drain region formed in the substrate at respective sides of the gate. The isolation structure further includes a recess. The gate includes a first gate portion formed on a surface of the substrate and a second gate portion downwardly extending from the first gate portion and formed in the recess.
摘要:
A high voltage metal-oxide-semiconductor transistor device includes a substrate, at least an isolation structure formed in the substrate, a gate formed on the substrate, and a source region and a drain region formed in the substrate at respective sides of the gate. The isolation structure further includes a recess. The gate includes a first gate portion formed on a surface of the substrate and a second gate portion downwardly extending from the first gate portion and formed in the recess.
摘要:
MOS devices having localized stressors are provided. Embodiments of the invention comprise a gate electrode formed over a substrate and source/drain regions formed on either side of the gate electrode. The source/drain regions include an embedded stressor and a capping layer on the embedded stressor. Preferably, the embedded stressor has a lattice spacing greater than the substrate lattice spacing. In a preferred embodiment, the substrate is silicon and the embedded stressor is silicon germanium. A method of manufacturing is also provided, wherein strained PMOS and NMOS transistors may be formed simultaneously.