摘要:
The metal gate structure of the present invention can include a TiN complex, and the N/Ti proportion of the TiN complex is decreased from bottom to top. In one embodiment, the TiN complex can include a single TiN layer, which has an N/Ti proportion gradually decreasing from bottom to top. In another embodiment, the TiN complex can include a plurality of TiN layers stacking together. In such a case, the lowest TiN layer has a higher N/Ti proportion than the adjusted TiN layer.
摘要:
The metal gate structure of the present invention can include a TiN complex, and the N/Ti proportion of the TiN complex is decreased from bottom to top. In one embodiment, the TiN complex can include a single TiN layer, which has an N/Ti proportion gradually decreasing from bottom to top. In another embodiment, the TiN complex can include a plurality of TiN layers stacking together. In such a case, the lowest TiN layer has a higher N/Ti proportion than the adjusted TiN layer.
摘要:
A method for fabricating metal gate transistor is disclosed. First, a substrate having a first transistor region and a second transistor region is provided. Next, a stacked film is formed on the substrate, in which the stacked film includes at least one high-k dielectric layer and a first metal layer. The stacked film is patterned to form a plurality of gates in the first transistor region and the second transistor region, a dielectric layer is formed on the gates, and a portion of the dielectric layer is planarized until reaching the top of each gates. The first metal layer is removed from the gate of the second transistor region, and a second metal layer is formed over the surface of the dielectric layer and each gate for forming a plurality of metal gates in the first transistor region and the second transistor region.
摘要:
A method for fabricating a semiconductor structure is disclosed. A substrate with a first transistor having a first dummy gate and a second transistor having a second dummy gate is provided. The conductive types of the first transistor and the second transistor are different. The first and second dummy gates are simultaneously removed to form respective first and second openings. A high-k dielectric layer, a second type conductive layer and a first low resistance conductive layer are formed on the substrate and fill in the first and second openings, with the first low resistance conductive layer filling up the second opening. The first low resistance conductive layer and the second type conductive layer in the first opening are removed. A first type conductive layer and a second low resistance conductive layer are then formed in the first opening, with the second low resistance conductive layer filling up the first opening.
摘要:
A method for fabricating a semiconductor structure is disclosed. A substrate with a first transistor having a first dummy gate and a second transistor having a second dummy gate is provided. The conductive types of the first transistor and the second transistor are different. The first and second dummy gates are simultaneously removed to form respective first and second openings. A high-k dielectric layer, a second type conductive layer and a first low resistance conductive layer are formed on the substrate and fill in the first and second openings, with the first low resistance conductive layer filling up the second opening. The first low resistance conductive layer and the second type conductive layer in the first opening are removed. A first type conductive layer and a second low resistance conductive layer are then formed in the first opening, with the second low resistance conductive layer filling up the first opening.
摘要:
A gate structure of a semiconductor device includes a first low resistance conductive layer, a second low resistance conductive layer, and a first type conductive layer disposed between and directly contacting sidewalls of the first low resistance conductive layer and the second low resistance conductive layer.
摘要:
A method for fabricating a semiconductor structure is disclosed. A substrate with a first transistor having a first dummy gate and a second transistor having a second dummy gate is provided. The conductive types of the first transistor and the second transistor are different. The first and second dummy gates are simultaneously removed to form respective first and second openings. A high-k dielectric layer, a second type conductive layer and a first low resistance conductive layer are formed on the substrate and fill in the first and second openings, with the first low resistance conductive layer filling up the second opening. The first low resistance conductive layer and the second type conductive layer in the first opening are removed. A first type conductive layer and a second low resistance conductive layer are then formed in the first opening, with the second low resistance conductive layer filling up the first opening.
摘要:
A gate structure of a semiconductor device includes a first low resistance conductive layer, a second low resistance conductive layer, and a first type conductive layer disposed between and directly contacting sidewalls of the first low resistance conductive layer and the second low resistance conductive layer.
摘要:
A method for manufacturing a CMOS device having dual metal gate includes providing a substrate having at least two transistors of different conductive types and a dielectric layer covering the two transistors, planarizing the dielectric layer to expose gate conductive layers of the two transistors, forming a patterned blocking layer exposing one of the conductive type transistor, performing a first etching process to remove a portion of a gate of the conductive type transistor, reforming a metal gate, removing the patterned blocking layer, performing a second etching process to remove a portion of a gate of the other conductive type transistor, and reforming a metal gate.
摘要:
A method for fabricating metal gate transistor is disclosed. First, a substrate having a first transistor region and a second transistor region is provided. Next, a stacked film is formed on the substrate, in which the stacked film includes at least one high-k dielectric layer and a first metal layer. The stacked film is patterned to form a plurality of gates in the first transistor region and the second transistor region, a dielectric layer is formed on the gates, and a portion of the dielectric layer is planarized until reaching the top of each gates. The first metal layer is removed from the gate of the second transistor region, and a second metal layer is formed over the surface of the dielectric layer and each gate for forming a plurality of metal gates in the first transistor region and the second transistor region.