摘要:
A reinforcing member for a structural component such as a rail or channel of a vehicle is provided which includes a carrier and a thermally expansible structural reinforcing material element which is fastened to the carrier by mechanical fixation or an adhesive. The mechanical fixation may be provided by a flange or other mechanical connection on the carrier or by a fastener such as a push pin extending through aligned holes and openings in the carrier and foamable material. The push pins are preferably of a synthetic resin material which more closely approximates the heat conductivity of the foamable material when the latter is activated by heat, and is sufficiently yieldable to absorb impacts to the foamable material during installation.
摘要:
Expandable sealant and baffle compositions and methods of forming and using such compositions are provided wherein the compositions comprise a first thermoplastic resin, an epoxy resin, preferably a second thermoplastic resin different from the first thermoplastic resin, and optionally a compound selected from the group consisting of pigments, blowing agents, catalysts, curing agents, reinforcers, and mixtures thereof. The resulting compositions are formed as self-sustaining bodies which can be heat-expanded into a lightweight, high strength product for sealing hollow structural members of vehicles, substantially decreasing the noise which travels along the length of those members as well as strengthening those members with minimal increases in their weights. In a preferred embodiment, the first thermoplastic resin is an SBS block co-polymer, the epoxy resin is a bisphenol A-based liquid epoxy resin, the second thermoplastic resin is a polystyrene, and the reinforcer is hydrated amorphous silica. The compositions can be formed into free-standing, self-sustaining parts or into U-shaped members supported on lattice-type nylon supports.
摘要:
A reinforcing member for receiving thereon a thermally expansible reinforcing material includes a tubular carrier and a fastener mechanically affixing the reinforcing material to the carrier. The tubular carrier preferably has a continuous arcuate wall with the reinforcing material received on the exterior thereof. The reinforcing material may be provided as a plurality of longitudinally spaced annular elements, an elongated sleeve, or a plurality of prism-shaped elements. Upon heating, the reinforcing material expands and bonds the carrier to the structural member to provide additional strength and stiffness.
摘要:
Expandable sealant and baffle compositions and methods of forming and using such compositions are provided wherein the compositions comprise a first thermoplastic resin, an epoxy resin, preferably a second thermoplastic resin different from the first thermoplastic resin, and optionally a compound selected from the group consisting of pigments, blowing agents, catalysts, curing agents, reinforcers, and mixtures thereof. The resulting compositions are formed as self-sustaining bodies which can be heat-expanded into a lightweight, high strength product for sealing hollow structural members of vehicles, substantially decreasing the noise which travels along the length of those members as well as strengthening those members with minimal increases in their weights. In a preferred embodiment, the first thermoplastic resin is an SBS block co-polymer, the epoxy resin is a bisphenol A-based liquid epoxy resin, the second thermoplastic resin is a polystyrene, and the reinforcer is hydrated amorphous silica. The compositions can be formed into free-standing, self-sustaining parts or into U-shaped members supported on lattice-type nylon supports.
摘要:
A reinforced structural member is provided which includes a reinforcing member received in the cavity of a structural member. The reinforcing member includes a carrier having divergent, intersecting legs which preferably engage and rest upon the structural member, a thermally expandable reinforcing material, and a fastener for coupling the reinforcing material to the carrier. The thermally expandable reinforcing material is preferably provided as separate elements positioned on the carrier, whereby upon activation by heat, the expandable material melts, foams and expands so that after curing, the structural member is bonded to the carrier. The shape of the carrier in combination with the expanded reinforcing material serves to stiffen and reinforce the structural member. The thermally expandable material is preferably initially dry and non-tacky, and the fasteners serves to maintain the relative position of the reinforcing material elements on the carrier prior to activation of the reinforcing material.
摘要:
Expandable sealant and baffle compositions and methods of forming and using such compositions are provided wherein the compositions comprise a first thermoplastic resin, an epoxy resin, preferably a second thermoplastic resin different from the first thermoplastic resin, and optionally a compound selected from the group consisting of pigments, blowing agents, catalysts, curing agents, reinforcers, and mixtures thereof. The resulting compositions are formed as self-sustaining bodies which can be heat-expanded into a lightweight, high strength product for sealing hollow structural members of vehicles, substantially decreasing the noise which travels along the length of those members as well as strengthening those members with minimal increases in their weights. In a preferred embodiment, the first thermoplastic resin is an SBS block co-polymer, the epoxy resin is a bisphenol A-based liquid epoxy resin, the second thermoplastic resin is a polystyrene, and the reinforcer is hydrated amorphous silica. The compositions can be formed into free-standing, self-sustaining parts or into U-shaped members supported on lattice-type nylon supports.
摘要:
A reinforced structural member includes a structural member and a reinforcing member, the reinforcing member being received within a cavity of the structural member and bonded thereto by thermally expansible foaming structural reinforcing material. The reinforcing member includes a carrier, a structural reinforcing material element, a directional shelf separate from the carrier, and a fastener coupling the directional shelf to the carrier. The directional shelf includes a platform which is apertured to permit the reinforcing material to foam and expand therethrough to bond the carrier directly to an adjacent wall of the structural member. At least one directional wall extends at an oblique angle to the platform to limit the expansion of the structual reinforcing material therepast during foaming. The shelf may have two directional walls which are opposing in substantially perpendicular relationship to the platform, in acute angular relationship to the platform, or diverge extending at obtuse angles to the platform.
摘要:
An engaging device for use in a user interface device is provided. The engaging device for use in a user interface device, wherein the user interface includes a main body having a body panel disposed therein, and a case having a panel with a recess therein, the engaging device includes a plurality of engaging elements disposed on the main body for engaging the main body in the recess of the case panel through an engagement between the case panel and the engaging elements, wherein one end of the engaging elements is connected to the main body, the other end thereof is a free end, and the middle portion thereof is bent and protruded for being away from the main body.
摘要:
This invention generally relates to a high resilience urethane foam (HR foam) having low compression set at a wide range of isocyanate index for use in small void filling in integrated foam parts.The small voids formed in the molding process of integrated foam parts can be filled without penetration of foaming liquids into existing foam cells. In addition, resulting foams have very low compression set values at a wide range of isocyanate index.The foaming system of the present invention is composed of two components, i.e., thixotropic polyisocyanate component and thixotropic polyol component. Their thixotropicity is obtained by adding benzal sorbitol into respective components. The polyisocyanate is selected from organic polyisocyanates and the polyol component is prepared by mixing a polyol blend composed of a polyolefinic polyol and a polyoxyalkylene polyol in a weight ratio between 95/5 to 50/50, a blowing agent, a surfactant and a catalyst.