Abstract:
Provided is a method of fabricating a semiconductor device that includes providing a semiconductor substrate having a front side and a back side, forming a first circuit and a second circuit at the front side of the semiconductor substrate, bonding the front side of the semiconductor substrate to a carrier substrate, thinning the semiconductor substrate from the back side, and forming an trench from the back side to the front side of the semiconductor substrate to isolate the first circuit from the second circuit.
Abstract:
Provided is a method of forming and/or using a backside-illuminated sensor including a semiconductor substrate having a front surface and a back surface. A transfer transistor and a photodetector are formed on the front surface. The gate of the transfer transistor includes an optically reflective layer. The gate of the transfer transistor, including the optically reflective layer, overlies the photodetector. Radiation incident the back surface and tratversing the photodetector may be reflected by the optically reflective layer. The reflected radiation may be sensed by the photodetector.
Abstract:
Provided is a method for fabricating an image sensor device that includes providing a substrate having a front side and a back side; patterning a photoresist on the front side of the substrate to define an opening having a first width, the photoresist having a first thickness correlated to the first width; performing an implantation process through the opening using an implantation energy correlated to the first thickness thereby forming a first doped isolation feature; forming a light sensing feature adjacent to the first doped isolation feature, the light sensing feature having a second width; and thinning the substrate from the back side so that the substrate has a second thickness that does not exceed twice a depth of the first doped isolation feature. A pixel size is substantially equal to the first and second widths.
Abstract:
A backside-illuminated sensor including a semiconductor substrate. The semiconductor substrate has a front surface and a back surface. A plurality of pixels are formed on the front surface of the semiconductor substrate. At least one pixel includes a photogate structure. The photogate structure has a metal gate that includes a reflective layer.
Abstract:
Provided is a method for fabricating an image sensor device that includes providing a substrate having a front side and a back side; patterning a photoresist on the front side of the substrate to define an opening having a first width, the photoresist having a first thickness correlated to the first width; performing an implantation process through the opening using an implantation energy correlated to the first thickness thereby forming a first doped isolation feature; forming a light sensing feature adjacent to the first doped isolation feature, the light sensing feature having a second width; and thinning the substrate from the back side so that the substrate has a second thickness that does not exceed twice a depth of the first doped isolation feature. A pixel size is substantially equal to the first and second widths.
Abstract:
Provided is a method for fabricating an image sensor device that includes providing a substrate having a front side and a back side; patterning a photoresist on the front side of the substrate to define an opening having a first width, the photoresist having a first thickness correlated to the first width; performing an implantation process through the opening using an implantation energy correlated to the first thickness thereby forming a first doped isolation feature; forming a light sensing feature adjacent to the first doped isolation feature, the light sensing feature having a second width; and thinning the substrate from the back side so that the substrate has a second thickness that does not exceed twice a depth of the first doped isolation feature. A pixel size is substantially equal to the first and second widths.
Abstract:
Provided is a method of forming and/or using a backside-illuminated sensor including a semiconductor substrate having a front surface and a back surface. A transfer transistor and a photodetector are formed on the front surface. The gate of the transfer transistor includes an optically reflective layer. The gate of the transfer transistor, including the optically reflective layer, overlies the photodetector. Radiation incident the back surface and tratversing the photodetector may be reflected by the optically reflective layer. The reflected radiation may be sensed by the photodetector.
Abstract:
Provided is a method for fabricating an image sensor device that includes providing a substrate having a front side and a back side; patterning a photoresist on the front side of the substrate to define an opening having a first width, the photoresist having a first thickness correlated to the first width; performing an implantation process through the opening using an implantation energy correlated to the first thickness thereby forming a first doped isolation feature; forming a light sensing feature adjacent to the first doped isolation feature, the light sensing feature having a second width; and thinning the substrate from the back side so that the substrate has a second thickness that does not exceed twice a depth of the first doped isolation feature. A pixel size is substantially equal to the first and second widths.
Abstract:
Provided is a method of fabricating an image sensor device. The method includes providing a semiconductor substrate having a front side and a back side, forming a first isolation structure at the front side of the semiconductor substrate, thinning the semiconductor substrate from the back side, and forming a second isolation structure at the back side of the semiconductor substrate. The first and second isolation structures are shifted with respect to each other.
Abstract:
Provided is a method of fabricating an image sensor device. The method includes providing a semiconductor substrate having a front side and a back side, forming a first isolation structure at the front side of the semiconductor substrate, thinning the semiconductor substrate from the back side, and forming a second isolation structure at the back side of the semiconductor substrate. The first and second isolation structures are shifted with respect to each other.