摘要:
A method for commercial production of aprotinin entails heterologous expression of the protein in plants, preferably at a level such that aprotinin accounts for at least 0.1% of the total extracted protein. An aprotinin-expressing plant also has potential of increased insecticidal resistance by virtue of producing the protein. A genetic map of the integration locus allows identification of plants derived from the transgenic plant. This approach also reveals genetic loci on a plant chromosome that support high levels of gene expression and can be used as site of integration for expression of other genes of interest.
摘要:
A method for commercial production of avidin entails heterologous expression of the protein in plants, in native conformation, at an expression level such that avidin represents at least 0.1% of total extracted protein. A genetic map of the integration locus allows for the identification of the avidin-expressing plant. Genetic loci on a plant chromosome are revealed that support high levels of avidin expression and that can be used as a site of integration for high level expression of other genes of interest.
摘要:
A method for commercial production of GUS entails heterologous expression of the protein in plants, in native conformation, at an expression level such that avidin represents at least 0.1% of total extracted protein. A genetic map of the integration locus allows for the identification of the GUS-expressing plant. Genetic loci on a plant chromosome are revealed that support high levels of GUS expression and that can be used as a site of integration for high level expression of other genes of interest.
摘要:
Production of proteases in plants is set forth, whereby heterologous DNA encoding the protease is introduced into the plant and expression of the protein achieved. By such methods, expression is achieved in plants wherein the plant cell is not damaged, the protein can be recovered without contamination by other proteases, and can be expressed at levels such that commercial production of the enzyme is obtained. Expression levels can be at 0.1% of total soluble protein of the plant, or higher.
摘要:
A method of increasing recovery of active enzyme produced in a plant is provided where the enzyme requires a transitional metal cofactor for activation. The metal cofactor is supplied to the enzyme during plant development, during extraction, or after extraction. Recovery of active enzyme is also provided by incubating the extracted enzyme at a non-enzyme degrading temperature. Addition of a negative ion salt further improves active enzyme recovery. Optimum salt concentrations for recovery of laccase from plants using copper solutions is provided.
摘要:
Production of proteases in plants is set forth, whereby heterologous DNA encoding the protease is introduced into the plant and expression of the protein achieved. By such methods, expression is achieved in plants wherein the plant cell is not damaged, the protein can be recovered without contamination by other proteases, and can be expressed at levels such that commercial production of the enzyme is obtained. Expression levels can be at 0.1% of total soluble protein of the plant, or higher.
摘要:
Expression of laccase in plants at commercial levels of production is provided. The laccase gene is preferably operably linked with promoter sequences preferentially directing expression of laccase to the seed of the plant, and may additionally include sequences directing expression to the plant cell wall. Methods of improving the process of introducing DNA into plants via Agrobacterium are also provided.
摘要:
A method for commercial production and use of heterologous laccase from plant seed in commercial processes is shown. The method comprises degerminating the germ portion of the seed and using the germ as the source of laccase in a commercial process. Increased concentration of laccase on a dry weight basis is achieved. Increased cost recovery is obtained in the process.
摘要:
A method for extraction of heterologous protein from plant seed comprises extracting the germ portion of the seed and extracting and purifying the protein from the germ. Enhanced expression in the germ is provided, and allows for improved efficiency in production, and cost savings. Directing expression to the germ portion further increases expression levels of the protein. The ubiquitin promoter preferentially directs expression to the germ portion of plant seed.