摘要:
A system supports 50 ms protection switching times independent of network architecture. The system includes multiple protection switch fabrics to perform facility protection switching for the signals and a central switch fabric to switch a subset of the signals in a non-facility protection switching manner among the protection switch fabrics. Linear and ring network configurations are supported by the system. The system has flexibility to perform Linear Automatic Protection Switching (LAPS), Unidirection Path Switched Ring (UPSR) protection switching, and Bidirectional Line Switched Ring (BLSR) protection switching without burdening the central switch fabric with unnecessary or redundant traffic.
摘要:
A communication system includes a first ingress content processor that receives information associated with a first traffic type. The first ingress content processor places the information associated with the first traffic type into a system cell having a common system cell format. A second ingress content processor receives information associated with a second traffic type. The second ingress content processor places the information associated with the second traffic type into a system cell having the common system cell format. A switch fabric receives system cells from the first and second ingress content processors. System cells from the first ingress content processor are automatically sent to the switch fabric while system cells from the second ingress content processor are required to be scheduled before being sent to the switch fabric. The switch fabric separately queues system cells carrying payloads associated with the first traffic type from system cells carrying payloads associated with the second traffic type. The switch fabric services system cells carrying payloads associated with the first traffic type prior to servicing system cells carrying payloads associated with the second traffic type.
摘要:
A communication system includes a first ingress content processor that receives information associated with a first traffic type. The first ingress content processor places the information associated with the first traffic type into a system cell having a common system cell format. A second ingress content processor receives information associated with a second traffic type. The second ingress content processor places the information associated with the second traffic type into a system cell having the common system cell format. A switch fabric receives system cells from the first and second ingress content processors. System cells from the first ingress content processor are automatically sent to the switch fabric while system cells from the second ingress content processor are required to be scheduled before being sent to the switch fabric. The switch fabric separately queues system cells carrying payloads associated with the first traffic type from system cells carrying payloads associated with the second traffic type. The switch fabric services system cells carrying payloads associated with the first traffic type prior to servicing system cells carrying payloads associated with the second traffic type.
摘要:
A communication system includes a first ingress content processor that receives information associated with a first traffic type. The first ingress content processor places the information associated with the first traffic type into a system cell having a common system cell format. A second ingress content processor receives information associated with a second traffic type. The second ingress content processor places the information associated with the second traffic type into a system cell having the common system cell format. A switch fabric receives system cells from the first and second ingress content processors. System cells from the first ingress content processor are automatically sent to the switch fabric while system cells from the second ingress content processor are required to be scheduled before being sent to the switch fabric. The switch fabric separately queues system cells carrying payloads associated with the first traffic type from system cells carrying payloads associated with the second traffic type. The switch fabric services system cells carrying payloads associated with the first traffic type prior to servicing system cells carrying payloads associated with the second traffic type.
摘要:
Erroneous data due to faults are prevented from propagating through a distributed network node having diversely routed communications links by using a fault masking technique that eliminates the 60 ms of error propagation time associated with SONET networks. The fault masking technique can also prevent random bit errors from propagating through the distributed network node. A frame alignment technique used in the network node is scalable for very wide words (e.g., 128 bits) for use with high speed optical communications protocols, such as OC-192.
摘要:
Packets used for distributing timing information over a Resilient Packet Ring (RPR) are generated by encoding Synchronization Status Messaging (SSM) messages into IEEE 802.3ah OAM packets (or any other OAM packets, such as those defined in ITU Y.1731). Information indicating the direction that each message is to be transmitted around the RPR ring is also encoded in the packets in either the spare bits of the SSM messages or in the Type-Length-Value (TLV) bytes of the IEEE 802.3ah OAM packets or Y.1731 OAM packets. RPR protection is disabled for the packets carrying the SSM messages and the packets are transmitted to adjacent network nodes in the directions specified by the information encoded in the messages. Information encoded in received packets specifying timing quality and direction of the received messages is observed and compared to determine which timing information included in the messages to use for clock timing.
摘要:
To perform protection switching between tunnels in a network, Y.1731-based APS messages are often sent from a management system to nodes at the tunnels' end-points. If the management system is located near one node (local node) and far away from the other node (remote node), the APS message, which operates at the Ethernet service layer, travels to the remote node slower than traffic over the tunnels. This slower transmission time may prevent the remote node from performing a switch within a desired timeframe. The disclosed embodiments include a 1:1 bidirectional VLAN-based protection arrangement that accomplishes a 50 millisecond switching time without using Y.1731-based APS messages. The embodiments accomplish this by sending a switching command from the management system to the local node and modifying a message already traveling from the local node to the remote node to include a switching message that causes the remote node to perform the switch.
摘要:
An embodiment of the invention comprises a reconfigurable chassis with one or more multi-functionality card slots, where each multi-functionality card slot is capable of being populated with at least one of a plurality of different types of cards, including port cards and switch cards. In a first configuration, the port card slots and the multi-functionality card slots are populated with port cards. In a second configuration, a first set of multi-functionality card slots is populated with switch cards and a second set of multi-functionality card slots is populated with port cards. In a third configuration, the first set of multi-functionality card slots and the second set of multi-functionality card slots are populated with switch cards.
摘要:
A method and corresponding apparatus allows unknown packet traffic, such as Ethernet traffic, to be carried on a Resilient Packet Ring (RPR) network without flooding the traffic on the RPR network. Modules in a station of the ring network compare a destination address in a packet traffic signal with known addresses and associate an identifier of a tunnel in the ring network with the packet traffic signal based on the comparison. The modules then associate with the packet traffic signal an identifier of a destination station in the ring network that corresponds to the identifier of the tunnel and forward the packet traffic signal to the destination station via the tunnel. By transmitting the packet traffic via tunnels instead of flooding the RPR network, spatial reuse may be implemented allowing the network to support a higher volume of traffic.
摘要:
An embodiment of the invention comprises a reconfigurable chassis with one or more multi-functionality card slots, where each multi-functionality card slot is capable of being populated with at least one of a plurality of different types of cards, including port cards and switch cards. In a first configuration, the port card slots and the multi-functionality card slots are populated with port cards. In a second configuration, a first set of multi-functionality card slots is populated with switch cards and a second set of multi-functionality card slots is populated with port cards. In a third configuration, the first set of multi-functionality card slots and the second set of multi-functionality card slots are populated with switch cards.