摘要:
Disclosed is a method for determining a pixel gray scale value image, particularly for a multi-dimensional image system. According to said method a first modulation signal (M1) which is emitted at the emitting end and is reflected on an object that is to be recorded is correlated with a second modulation signal (M2) and is recorded at the receiving end based on at least two correlation signals (Ua, Ub or Ia, Ib) that are proportional to the respective received first modulation signal (M1). One of said modulation signals (M1, M2) is phase shifted in several phase steps (ψk) at the emitting or receiving end and a differential signal (D) is determined for each phase step (ψk) based on the correlation signals (Ua, Ub or Ia, Ib,) and a pixel gray scale value (PGray) is determined based on said difference signal (D) independently of interfering signals.
摘要:
Disclosed is a method for determining a pixel gray scale value image, particularly for a multi-dimensional image system. According to said method a first modulation signal (M1) which is emitted at the emitting end and is reflected on an object that is to be recorded is correlated with a second modulation signal (M2) and is recorded at the receiving end based on at least two correlation signals (Ua, Ub or Ia, Ib) that are proportional to the respective received first modulation signal (M1). One of said modulation signals (M1, M2) is phase shifted in several phase steps (ψk) at the emitting or receiving end and a differential signal (D) is determined for each phase step (ψk) based on the correlation signals (Ua, Ub or Ia, Ib,) and a pixel gray scale value (PGray) is determined based on said difference signal (D) independently of interfering signals.
摘要:
A method is described for detecting brightness signals from a multiplicity of light-sensitive sensor elements, in particular CCD lines or arrays, in which the brightness signals are amplified in such a way that an A/D converter which digitizes the amplified brightness signals works in its permissible working range. For the brightness signal of a predetermined sensor element, the gain is reduced in steps, preferably in binary steps, from a maximum gain factor down to a working value at which the A/D converter works in the permissible working range. For each following sensor element, the working value of the respective preceding sensor element is used as the maximum gain factor. The number of changeover operations of the amplifier is considerably reduced and thus the detection time is shortened.