摘要:
A structure and process to define a via/interconnect structure is described. The structure is formed by reactive ion etching (RIE) where vias are formed first then the interconnects. The disclosed method relies on first depositing a metal with a thickness equivalent to the total height of the via and interconnect. Once vias are delineated by forming a hard mask and lithography, the lines are patterned using a lithographic step. Vias and lines are formed using lithography and RIE in one step and interfacial integrity is maintained resulting in high electromigration performance.
摘要:
A structure and process to define a via/interconnect structure is described. The structure is formed by reactive ion etching (RIE) where vias are formed first then the interconnects. The disclosed method relies on first depositing a metal with a thickness equivalent to the total height of the via and interconnect. Once vias are delineated by forming a hard mask and lithography, the lines are patterned using a lithographic step. Vias and lines are formed using lithography and RIE in one step and interfacial integrity is maintained resulting in high electromigration performance.
摘要:
A method and apparatus for detecting metal extrusion associated with electromigration (EM) under high current density situations within an EM test line by measuring changes in capacitance associated with metal extrusion that occurs in the vicinity of the charge carrying surfaces of one or more capacitors situated in locations of close physical proximity to anticipated sites of metal extrusion on an EM test line are provided. The capacitance of each of the one or more capacitors is measured prior to and then during or after operation of the EM test line so as to detect capacitance changes indicating metal extrusion.
摘要:
Techniques for employing different channel materials within the same CMOS circuit are provided. In one aspect, a method of fabricating a CMOS circuit includes the following steps. A wafer is provided having a first semiconductor layer on an insulator. STI is used to divide the first semiconductor layer into a first active region and a second active region. The first semiconductor layer is recessed in the first active region. A second semiconductor layer is epitaxially grown on the first semiconductor layer, wherein the second semiconductor layer comprises a material having at least one group III element and at least one group V element. An n-FET is formed in the first active region using the second semiconductor layer as a channel material for the n-FET. A p-FET is formed in the second active region using the first semiconductor layer as a channel material for the p-FET.
摘要:
A back end of the line dry etch method is disclosed. Etching of a mask oxide and temporary (sacrificial) silicon mandrel occurs following the formation of gate stacks and tungsten studs. The mask oxide is etched selectively to tungsten and silicon through the use of a polymerizing oxide etch. The silicon is etched selectively to both silicon nitride, silicon oxide, and tungsten. The process removes the silicon mandrel and associated silicon residual stringers by removing backside helium cooling, while using HBr as the single species etchant, and by adjusting the duration, the pressure, and the electrode gaps during the silicon etch process. The silicon may be undoped polysilicon, doped polysilicon, or single crystal silicon.
摘要:
Techniques for employing different channel materials within the same CMOS circuit are provided. In one aspect, a method of fabricating a CMOS circuit includes the following steps. A wafer is provided having a first semiconductor layer on an insulator. STI is used to divide the first semiconductor layer into a first active region and a second active region. The first semiconductor layer is recessed in the first active region. A second semiconductor layer is epitaxially grown on the first semiconductor layer, wherein the second semiconductor layer comprises a material having at least one group III element and at least one group V element. An n-FET is formed in the first active region using the second semiconductor layer as a channel material for the n-FET. A p-FET is formed in the second active region using the first semiconductor layer as a channel material for the p-FET.