摘要:
Techniques for detecting acquisition of a false channel in a wireless communication system are described. For false channel detection, a peak corresponding to a signal from a base station is initially detected. Frequency acquisition and time tracking of the peak are then performed. The frequency acquisition attempts to determine and correct downconversion frequency error. The time tracking attempts to follow the peak as it moves due to sample timing error and/or changes in channel conditions. Whether the signal is from a desired frequency channel or a false frequency channel is determined based on the time tracking. If a false channel is acquired, then the sampling timing will be either too slow or too fast, and the peak will move at a fast rate. A false channel may be detected based on the movement of the peak.
摘要:
Techniques for detecting acquisition of a false channel in a wireless communication system are described. For false channel detection, a peak corresponding to a signal from a base station is initially detected. Frequency acquisition and time tracking of the peak are then performed. The frequency acquisition attempts to determine and correct downconversion frequency error. The time tracking attempts to follow the peak as it moves due to sample timing error and/or changes in channel conditions. Whether the signal is from a desired frequency channel or a false frequency channel is determined based on the time tracking. If a false channel is acquired, then the sampling timing will be either too slow or too fast, and the peak will move at a fast rate. A false channel may be detected based on the movement of the peak.
摘要:
A device is disclosed that includes a first pin to supply power to a first power domain of an integrated circuit, a second pin to supply power to a second power domain of the integrated circuit, a switching regulator and a controller. The switching regulator is coupled to the first pin to provide a first regulated power supply to the first power domain and is coupled to the second pin to provide a second regulated power supply to the second power domain. The controller is coupled to the first pin and to the second pin to selectively reduce current flow to at least the second pin during a low power event.
摘要:
A wireless receiver receiving multipath Wash-code symbols determines which of fingers 402, 410 have locked on a signal. Measurements of the correlation energies between the received signal and all possible symbols are stored in energy storage units 404, 412. The actual signals are combined in combiner 408. A maximum determiner 416 determines the most likely combined symbol, and an index for this symbol is fed back to the energy storage units. Lock detectors 406, 414 use the measurement for this fed-back symbol to determine whether the finger has locked onto a path. This determination is used to decide whether the next signal detected by that finger should be applied to the combiner.
摘要:
A device is disclosed that includes a first pin to supply power to a first power domain of an integrated circuit, a second pin to supply power to a second power domain of the integrated circuit, a switching regulator and a controller. The switching regulator is coupled to the first pin to provide a first regulated power supply to the first power domain and is coupled to the second pin to provide a second regulated power supply to the second power domain. The controller is coupled to the first pin and to the second pin to selectively reduce current flow to at least the second pin during a low power event.
摘要:
In order to time track an incoming signal, a receiver demodulates a first instance of a signal to produce a first set of energy values corresponding to a set of possible data values of the signal. The receiver also demodulates a second instance of the signal to produce a second set of energy values corresponding to the set of possible data values. The receiver combines the first and the second sets of energy values to determine a combined set of energy values. The receiver determines a first estimate of a most likely transmitted data value based upon the combined set of energy values. The receiver decovers an early set of despread samples of the first instance using a symbol corresponding to the first estimate to produce a first early energy value. The receiver decovers a late set of despread samples of the first instance using the symbol corresponding to the first estimate to produce a first late energy value. Finally, the receiver determines a time offset of the first instance based upon the first early and the first late energy values.
摘要:
The probability based lock detection circuit determines whether a signal is sufficiently strong for communications in a mobile telecommunications system. If a signal is below a maximum energy threshold, the probability based lock detection is used to determine if the receiver is sufficiently capable to detect the signal and combine the signal with other signals received to obtain data transmitted by a mobile telephone. The probability based lock detection involves comparing index representations of maximums of 64 possible energies sent by the mobile telephone that identify that the signal was sent by mobile telephone. A mobile telephone sends signal that arrives to a base station through multiple paths to ensure accurate data transmission. Each signal includes data that identifies the mobile telephone. The probability based lock detection circuit determines whether the index of the maximum of 64 possible values of a signal sent to identify the mobile telephone is the same as the index of the maximum of the 64 possible values as calculated by combining all of signals sent by the mobile telephone.
摘要:
A wireless device achieves good performance using a crystal oscillator that is not compensated for temperature. The crystal oscillator provides a reference signal having a temperature dependent frequency error. A control unit estimates the frequency error (e.g., based on a received pilot) and provides a frequency error estimate. A clock generator generates a digital clock, which tracks chip timing, based on the reference signal and the frequency error estimate. A receiver frequency downconverts an input RF signal with a receive LO signal having the frequency error and provides an analog baseband signal. An ADC digitizes the analog baseband signal based on a sampling clock having the frequency error and provides ADC samples. A re-clocking circuit re-clocks the ADC samples based on a digital clock and provides data samples. A digital rotator frequency translates the data samples based on the frequency error estimate and provides frequency-translated samples centered near DC.
摘要:
The reliability of transmit power control (TPC) commands received from a transmitter is determined based on a TPC target value. The TPC target value is derived based on a TPC threshold and possibly a weight, depending on the receiver implementation. A received TPC command is considered reliable if its absolute value exceeds the TPC target value. Received TPC commands deemed as unreliable are discarded and not used for power control. Multiple TPC target values, used for detecting UP and DOWN commands, may be derived with multiple scaling factors. For a receiver in soft handover and receiving TPC commands from multiple transmitters, a different TPC target value may be derived for each transmitter. The received TPC commands for each transmitter are compared against that transmitter's TPC target value. Received TPC commands deemed as unreliable are discarded and not combined.
摘要:
A predistortion technique for high power amplifiers includes an adaptive predistortion algorithm that operates independently of data samples to write a set of complex gain values, or predistortion parameters, to a lookup table. The algorithm may be processor-driven. The gain values are taken from the lookup table and multiplied by a complex digital baseband waveform. The gain values may first be subjected to interpolation. The downconverted output of the amplifier is measured to gauge the efficacy of the predistortion. Based on the effect of the predistortion upon the ratio of in-band power to out-of-band power, decisions are made on the set of predistortion parameters for the next iteration of the algorithm. The algorithm runs continuously, perturbing parameters and adapting the predistortion functions accordingly in an effort to continually reflect instantaneous amplitude-modulation and phase-modulation relationships that may change over time with temperature variation or component aging.