摘要:
A vertical memory device on a silicon semiconductor substrate comprises a floating gate trench in the substrate, in the array, the trench. The walls of the floating gate trench were doped with a threshold implant through the trench surfaces. There is a tunnel oxide layer on the trench surfaces, the tunnel oxide layer having outer surfaces. There is a floating gate electrode in the trench on the outer surfaces of the tunnel oxide layer. There are source/drain regions in the substrate self-aligned with the floating gate electrode. The source line and a drain line form above the source region and the drain region respectively. An interelectrode dielectric layer overlies the top surface of the floating gate electrode, and the source line and the drain line, and there is a control gate electrode over the interelectrode dielectric layer over the top surface of the floating gate electrode.
摘要:
This is a method of forming a vertical memory device on a semiconductor substrate. Start by forming an initial mask with a first array of parallel strips, with a first orientation, on the surface of a silicon oxide layer on a substrate. Then form another mask with transverse strips to form gate trench openings between the first array of strips and the transverse strips. Next, etch floating gate trenches in the substrate through the gate trench openings. Dope the walls of the trenches with a threshold implant and remove exposed portions of the mask. Form source/drain regions in the substrate self-aligned with the floating gate electrode. Strip the remainder of the masks. Form a tunnel oxide layer on the trench surfaces and a floating gate electrode in the trench on the tunnel oxide layer. Above the source/drain regions, form source drain conductor lines in the substrate in a parallel array. Form an ONO dielectric layer and a control gate electrode over the top surface of the floating gate electrode and an array of P/N isolation regions in the silicon semiconductor substrate.
摘要:
A vertical memory device on a silicon semiconductor substrate comprises a floating gate trench in the substrate. in the array, the trench. The walls of the floating gate trench were doped with a threshold implant through the trench surfaces. There is a tunnel oxide layer on the trench surfaces, the tunnel oxide layer having outer surfaces. There is a floating gate electrode in the trench on the outer surfaces of the tunnel oxide layer. There are source/drain regions in the substrate self-aligned with the floating gate electrode. The source line and a drain line form above the source region and the drain region respectively. An interelectrode dielectric layer overlies the top surface of the floating gate electrode, and the source line and the drain line, and there is a control gate electrode over the interelectrode dielectric layer over the top surface of the floating gate electrode.
摘要:
A method of forming a vertical memory split gate flash memory device on a silicon semiconductor substrate is provided by the following steps. Form a floating gate trench hole in the silicon semiconductor substrate, the trench hole having trench surfaces. Form a tunnel oxide layer on the trench surfaces, the tunnel oxide layer having outer surfaces. Form a floating gate electrode layer filling the trench hole on the outer surfaces of the tunnel oxide layer. Form source/drain regions in the substrate self-aligned with the floating gate electrode layer. Pattern the floating gate electrode layer by removing the gate electrode layer from the drain region side of the trench hole. Form a control gate hole therein. Form an interelectrode dielectric layer over the top surface of the floating gate electrode, and over the tunnel oxide layer. Form a control gate electrode over the interelectrode dielectric layer over the top surface of the floating gate electrode and extending down into the control gate hole in the trench hole.
摘要:
A process for integrating the fabrication of a flash memory cell, on a first region of a semiconductor substrate, with the fabrication of salicided peripheral devices, on a second region of the semiconductor substrate, has been developed. The flash memory cell features SAC contact structures, located between stacked gate structures, contacting underlying source/drain regions. The stack gate structures are comprised of a polycide control gate shape, on a dielectric layer, overlying a polysilicon floating gate shape. The performance of the peripheral devices are increased via use of metal silicide layers, located on the top surface of a polysilicon gate structure, as well as on the adjacent heavily doped source/drain regions.
摘要:
A process for fabricating a flash memory cell, featuring self-aligned contact structures, overlying and contacting, self-aligned source, and self-aligned drain regions, located between stack gate structures, has been developed. The stack gate structures, located on an underlying silicon dioxide, tunnel oxide layer, are comprised of: a capping insulator shape; a polysilicon control gate shape; an inter-polysilicon dielectric shape; and a polysilicon floating gate shape. The use of self-aligned contact structures, and self-aligned source regions, allows increased cell densities to be achieved.
摘要:
When FLASH cells are made in association with STI (as opposed to LOCOS) it is often the case that stringers of silicon nitride are left behind after the spacers have been formed. This problem has been eliminated by requiring that the oxide in the STI trenches remain in place at the time that the silicon nitride spacers are formed. After that, the oxide is removed in the usual manner, following which a SALICIDE process is used to form a self aligned source line. When this sequence is followed no stringers are left behind on the walls of the trench, guaranteeing the absence of any open circuits or high resistance regions in the source line.
摘要:
A layer of well oxide is grown over the n-well or p-well region of the semiconductor substrate. A deep n-well implant is performed in high voltage device region, followed by a deep n-well drive-in of the deep n-well implant. The well oxide is removed; the field oxide (FOX) region is created in the high voltage device region. A layer of sacrificial oxide is deposited on the surface of the semiconductor substrate. A low voltage cluster n-well implant is performed in the high voltage PMOS region of the semiconductor substrate followed, for the high voltage NMOS region, by a low voltage cluster p-well implant which is followed by a buried p-well cluster implant.
摘要:
A new method of forming differential gate oxide thicknesses for both high and low voltage transistors is described. A semiconductor substrate is provided wherein active areas of the substrate are isolated from other active areas by shallow trench isolation regions. A polysilicon layer is deposited overlying a tunneling oxide layer on the surface of the substrate. The polysilicon and tunneling oxide layers are removed except in the memory cell area. An ONO layer is deposited overlying the polysilicon layer in the memory cell area and on the surface of the substrate in the low voltage and high voltage areas. The ONO layer is removed in the high voltage area. The substrate is oxidized in the high voltage area to form a thick gate oxide layer. Thereafter, the ONO layer is removed in the low voltage area and the substrate is oxidized to form a thin gate oxide layer. A second polysilicon layer is deposited over the ONO layer in the memory area, over the thin gate oxide layer in the low voltage area, and over the thick gate oxide layer in the high voltage area. The second polysilicon layer, ONO layer and first polysilicon layer in the memory cell area are patterned to form a control gate overlying a floating gate separated by the ONO layer. The second polysilicon layer is patterned to form a low voltage transistor in the low voltage area and a high voltage transistor in the high voltage area.
摘要:
A method of forming a vertical memory split gate flash memory device on a silicon semiconductor substrate is provided by the following steps. Form a floating gate trench hole in the silicon semiconductor substrate, the trench hole having trench surfaces. Form a tunnel oxide layer on the trench surfaces, the tunnel oxide layer having outer surfaces. Form a floating gate electrode layer filling the trench hole on the outer surfaces of the tunnel oxide layer. Form source/drain regions in the substrate self-aligned with the floating gate electrode layer. Pattern the floating gate electrode layer by removing the gate electrode layer from the drain region side of the trench hole Form a control gate hole therein. Form an interelectrode dielectric layer over the top surface of the floating gate electrode, and over the tunnel oxide layer. Form a control gate electrode over the interelectrode dielectric layer over the top surface of the floating gate electrode and extending down into the control gate hole in the trench hole.