Abstract:
A miniaturized multilayer hybrid-phase signal splitter circuit is proposed, which is fully equivalent in function to a conventional rat-race coupler, but with a specialized circuit layout structure that allows its IC implementation to be more miniaturized than the conventional rat-race coupler. The proposed hybrid-phase signal splitter circuit features the use of a multilayer substrate for the layout of six transmission lines in such a manner that the transmission lines in the middle layer are inductively coupled to the transmission lines on the overlying layer as well as the transmission lines on the underlying layer to form a Marchand balun. In IC implementation, the required layout area is only about 10% of the layout area for the conventional rat-race coupler.
Abstract:
A miniaturized dual-balanced mixer circuit based on a multilayer double spiral layout architecture is proposed, which is designed for use to provide a frequency mixing function for millimeter wave (MMW) signals, and which features a downsized circuit layout architecture that allows IC implementation to be more miniaturized than the conventional star-type dual-balanced mixer (DBM). The proposed miniaturized dual-balanced mixer circuit is distinguished from the conventional star-type DBM particularly in the use of a 3-dimensional double-spiral circuit layout architecture for the layout of two balun circuit units. This feature allows the required layout area to be only about 15% of that of the conventional star-type DBM.
Abstract:
A miniaturized dual-balanced mixer circuit based on a trifilar layout architecture is proposed, which is designed for use to provide a frequency mixing function for millimeter wave (MMW) signals, and which features a downsized circuit layout architecture that allows IC implementation to be more miniaturized than the conventional star-type dual-balanced mixer (DBM). The proposed miniaturized dual-balanced mixer circuit is distinguished from the conventional star-type DBM particularly in the use of a trifilar layout architecture for the layout of two balun circuit units. This feature allows the required layout area to be only about 20% of that of the conventional star-type DBM.
Abstract:
A miniaturized dual-balanced mixer circuit based on a double spiral layout architecture is proposed, which is designed for use to provide a frequency mixing function for millimeter wave (MMW) signals, and which features a downsized circuit layout architecture that allows IC implementation to be more miniaturized than the conventional star-type dual-balanced mixer (DBM). The proposed miniaturized dual-balanced mixer circuit is distinguished from the conventional star-type DBM particularly in the use of a double spiral layout architecture for the layout of two balun circuit units. This feature allows the required layout area to be only about 15% of that of the conventional star-type DBM.
Abstract:
A miniaturized dual-balanced mixer circuit based on a multilayer double spiral layout architecture is proposed, which is designed for use to provide a frequency mixing function for millimeter wave (MMW) signals, and which features a downsized circuit layout architecture that allows IC implementation to be more miniaturized than the conventional star-type dual-balanced mixer (DBM). The proposed miniaturized dual-balanced mixer circuit is distinguished from the conventional star-type DBM particularly in the use of a 3-dimensional double-spiral circuit layout architecture for the layout of two balun circuit units. This feature allows the required layout area to be only about 15% of that of the conventional star-type DBM.
Abstract:
A miniaturized dual-balanced mixer circuit based on a double spiral layout architecture is proposed, which is designed for use to provide a frequency mixing function for millimeter wave (MMW) signals, and which features a downsized circuit layout architecture that allows IC implementation to be more miniaturized than the conventional star-type dual-balanced mixer (DBM). The proposed miniaturized dual-balanced mixer circuit is distinguished from the conventional star-type DBM particularly in the use of a double spiral layout architecture for the layout of two balun circuit units. This feature allows the required layout area to be only about 15% of that of the conventional star-type DBM.
Abstract:
A miniaturized dual-balanced mixer circuit based on a trifilar layout architecture is proposed, which is designed for use to provide a frequency mixing function for millimeter wave (MMW) signals, and which features a downsized circuit layout architecture that allows IC implementation to be more miniaturized than the conventional star-type dual-balanced mixer (DBM). The proposed miniaturized dual-balanced mixer circuit is distinguished from the conventional star-type DBM particularly in the use of a trifilar layout architecture for the layout of two balun circuit units. This feature allows the required layout area to be only about 20% of that of the conventional star-type DBM.
Abstract:
The present invention relates to an electrostatic discharge (ESD) protection circuit, and more particularly to a band-pass structure electrostatic discharge protection circuit. An ESD protection circuit is disposed at the input of a radio frequency (RF) core circuit. The ESD protection circuit comprises a plurality of diodes and inductors constructing a plurality of discharging paths, wherein the diodes and inductors forms a band-pass filter structure. Such that, the RF core circuit with the ESD protection circuit of the present invention feature much higher ESD robustness and better RF performance than the conventional design.
Abstract:
A switchable bandpass filter includes a first stepped-impedance resonator, a second stepped-impedance resonator wirelessly coupled to the first stepped-impedance resonator, and a first diode connected to one end of the second stepped-impedance resonator.
Abstract:
A distributed amplifier is disclosed herein, which includes a signal amplification unit amplifying a RF input signal fed into the RF signal, a first biasing circuit providing a direct current (DC) bias signal, a second biasing circuit providing a DC bias signal, the variable terminal resistance providing an adjustable resistance, a RF signal input terminal provided for input of the RF input signal and a RF signal output terminal for output of a RF output signal. The output RF signal from the distributed amplifier is obtained from a gained version of the input RF signal. Since a load mismatch issue is compensated, a gain flatness issue is considerably improved and thus a gain-adjustable range is increased with respect to the distributed amplifier.