摘要:
A surface-modified silicate luminophore includes a silicate luminophore and a coating includes at least one of (a) a fluorinated coating including a fluorinated inorganic agent, a fluorinated organic agent, or a combination of fluorinated inorganic and organic agents, the fluorinated coating generating hydrophobic surface sites and (b) a combination of the fluorinated coating and at least one moisture barrier layer. The moisture barrier layer includes MgO, Al2O3, Y2O3, La2O3, Gd2O3, Lu2O3, and SiO2 or the corresponding precursors, and the coating is disposed on the surface of the silicate luminophore.
摘要翻译:表面改性硅酸盐发光体包括硅酸盐发光体,涂层包括(a)包含氟化无机物,氟化有机物或氟化无机和有机物的组合的氟化涂层中的至少一种,氟化涂层产生疏水性 表面部位和(b)氟化涂层和至少一个防潮层的组合。 防潮层包括MgO,Al 2 O 3,Y 2 O 3,La 2 O 3,Gd 2 O 3,Lu 2 O 3和SiO 2或相应的前体,并且涂层设置在硅酸盐发光体的表面上。
摘要:
A light emitting device having oxyorthosilicate luminophores is disclosed. The light emitting device includes a light emitting diode and luminescent substances disposed around the light emitting diode, to absorb at least a portion of light emitted from the light emitting diode and emitting light having different wavelength from that of the absorbed light. The luminescent substances have Eu2+-doped silicate luminophores in which solid solutions in the form of mixed phases between alkaline earth metal oxyorthosilicates and rare earth metal oxyorthosilicates are used as base lattices for the Eu2+activation leading to luminescence. The luminescent substances are used as radiation converters to convert a higher-energy primary radiation, for example, ultra violet (UV) radiation or blue light, into a longer-wave visible radiation and are therefore preferably employed in corresponding light-emitting devices.
摘要:
Exemplary embodiments of the present invention relate to light emitting devices including strontium oxyorthosilicate-type phosphors. The light emitting device includes a light emitting diode, which emits light in the UV or visible range, and phosphors disposed around the light emitting diode to absorb light emitted from the light emitting diode and emit light having a different wavelength from the absorbed light. The phosphors include an oxyorthosilicate phosphor having a general formula of Sr3-x-y-zCaxMIIySiO5: Euz with a calcium molar fraction in the range of 0
摘要:
Exemplary embodiments of the present invention relate to inorganic phosphors based on silicate compounds having improved stability under a resulting radiation load and resistance to atmospheric humidity, which are capable of converting higher-energy excitation radiation, i.e. ultraviolet (UV) or blue light, with high efficiency into a longer-wavelength radiation which may be in the visible spectral range. A calcium molar fraction x having a value between 0 and 0.05 is added to a silicate phosphor having the general formula Sr3-x-y-zCaxMIIySiO5:Euz.
摘要:
A light emitting device having oxyorthosilicate luminophores is disclosed. The light emitting device includes a light emitting diode and luminescent substances disposed around the light emitting diode, to adsorb at least a portion of light emitted from the light emitting diode and emitting light having different wavelength from that of the absorbed light. The luminescent substances have Eu2+-doped silicate luminophores in which solid solutions in the form of mixed phases between alkaline earth metal oxyorthosilicates and rare earth metal oxyorthosilicates are used as base lattices for the Eu2+ activation leading to luminescence. The luminescent substances are used as radiation converters to convert a higher-energy primary radiation, for example, ultra violet (UV) radiation or blue light, into a longer-wave visible radiation and are therefore preferably employed in corresponding light-emitting devices.
摘要:
Exemplary embodiments of the present invention disclose inorganic luminescent substances with Eu2+-doped silicate luminophores, in which solid solutions in the form of mixed phases between alkaline earth metal oxyorthosilicates and rare earth metal oxyorthosilicates are used as base lattices for the Eu2+ activation leading to the luminescence. These luminophores are described by the general formula (1-x) MII3SiO5.xSE2SiO5:Eu, in which MII preferably represents strontium ion or another alkaline earth metal ion, or another divalent metal ion selected from the group consisting of the magnesium, calcium, barium, copper, zinc, and manganese. These ions may be used in addition to strontium and also as mixtures with one another.
摘要:
Exemplary embodiments of the present invention relate to a light emitting device including a light emitting diode and a surface-modified luminophore. The surface-modified luminophore includes a silicate luminophore and a fluorinated coating arranged on the silicate luminophore.
摘要:
Exemplary embodiments of the present invention relate to a light emitting device including a light emitting diode and a surface-modified luminophore. The surface-modified luminophore includes a silicate luminophore and a fluorinated coating arranged on the silicate luminophore.
摘要:
Exemplary embodiments of the present invention relate to inorganic phosphors based on silicate compounds having improved stability under a resulting radiation load and resistance to atmospheric humidity, which are capable of converting higher-energy excitation radiation, i.e. ultraviolet (UV) or blue light, with high efficiency into a longer-wavelength radiation which may be in the visible spectral range. A calcium molar fraction x having a value between 0 and 0.05 is added to a silicate phosphor having the general formula Sr3-x-y-zCaxMIIySiO5:Euz.
摘要:
Exemplary embodiments of the present invention disclose inorganic luminescent substances with Eu2+-doped silicate luminophores, in which solid solutions in the form of mixed phases between alkaline earth metal oxyorthosilicates and rare earth metal oxyorthosilicates are used as base lattices for the Eu2+ activation leading to the luminescence. These luminophores are described by the general formula (1-x) MII3SiO5.xSE2SiO5:Eu, in which MII preferably represents strontium ion or another alkaline earth metal ion, or another divalent metal ion selected from the group consisting of the magnesium, calcium, barium, copper, zinc, and manganese. These ions may be used in addition to strontium and also as mixtures with one another.