Abstract:
A driving substrate of an e-paper apparatus includes a first metal layer, a second metal layer and a pixel electrode. The first metal layer has a scan line and a first storage electrode. The second metal layer has a data line and a common line. The scan line and the data line are disposed crossingly. The common line is disposed parallel to the data line substantially. The common line and the scan line are disposed crossingly. The pixel electrode is disposed over the common line and is electrically connected to the first storage electrode through a via.
Abstract:
A light-emitting device, electrically connected to an external variable voltage source, includes a plurality of light-emitting modules sequentially electrically connected in series and electrically connected to the external variable voltage source. Each light-emitting module has at least one light-emitting unit, a first connection terminal and a second connection terminal. At least one of the light-emitting modules has a control unit and a bypass unit electrically connected to the light-emitting unit. The second connection terminal of the light-emitting module having the bypass unit and the control unit is electrically connected to the first connection terminal of the other light-emitting module and serves as a detection terminal. The control unit detects a voltage of the detection terminal and accordingly controls the bypass unit to adjust a current flowing through the light-emitting unit.
Abstract:
An electronic package device has an accommodation space being substantially sealed. The electronic package device includes a fluid, an electronic element and a space buffer mechanism. The fluid is located in the accommodation space. The electronic element is also disposed in the accommodation space, and at least a part thereof contacts with the fluid. The space buffer mechanism at least partially contacts with the fluid and provides the displacement or deformation to buffer the volume variation of the fluid.
Abstract:
A light emitting device includes at least one light emitting unit, a switching unit, a comparator unit, a charge storage unit and a sensing unit. The switching unit is electrically connected to the light emitting unit. The comparator unit is electrically connected to the switching unit. The charge storage unit is electrically connected to the comparator unit and stores an amount of electric charges. The sensing unit has a light sensing circuit and is electrically connected to the charge storage unit. The light sensing circuit senses a light intensity of the light emitting unit. The sensing unit adjusts the amount of the electric charges and a voltage corresponding to the amount of the electric charges according to the light intensity. The comparator unit compares the voltage with a threshold voltage. The switching unit controls the light emitting unit in accordance with the result of the comparison.
Abstract:
A calibrating method of a light emitting device, which includes at least one light-emitting diode (LED) unit. The calibrating method includes the steps of inputting a brightness control signal to the LED unit, measuring a lighting brightness of the LED unit, and writing an initial relation of the brightness control signal and the lighting brightness into a memory unit. In addition, a light emitting device and a controlling method thereof are also disclosed.
Abstract:
A driving method of a touch display module is disclosed. The driving method includes the steps of writing a liquid crystal (LC) calibration signal to the data line by a calibration signal writing circuit during a blanking time between at least a data line writes the data signals to its corresponding pixel, so that the data line has a specific root mean square (RMS) voltage; and sensing a first sensing signal corresponding to the LC capacitance of the data line and sensing a second sensing signal corresponding to the LC capacitance of at least one scan line. An LC calibration signal is input to the data line during a blanking time between at least a data line writes the data signals to its corresponding pixel to achieve the same background capacitance so as to enhance the accuracy and the efficiency of touch sensing.
Abstract:
A cold cathode illumination apparatus applied with an alternative current includes a tube, at least one electrical connection element, a voltage transforming element, a cold cathode fluorescent lamp (CCFL) and a strip element. At least one part of the tube is light-permeable. The electrical connection element is disposed at one end of the tube. The voltage transforming element is disposed in the tube and electrically connected with the electrical connection element. The CCFL is disposed in the tube and electrically connected with the voltage transforming element. The strip element is disposed along and in the tube. The CCFL is connected with the strip element. The strip element has a reflective surface above which the CCFL is disposed.
Abstract:
A solar cell module has a chamber and includes a solar cell device, a gel/fluid, and a light-focusing unit. The solar cell device is disposed in the chamber, and the gel/fluid is filled in the chamber. The light-focusing unit focuses at least one part of the external light to the solar cell device.
Abstract:
A light-emitting device includes a plurality of light-emitting units, a plurality of non-address-embedded brightness control integrated circuits (ICs) and at least one system control unit. Each of the brightness control ICs is electrically connected to each of the light-emitting units. The system control unit addresses each of the brightness control ICs by outputting at least one addressing signal through an external circuit, and writes a brightness control signal to each of the brightness control ICs. Each brightness control IC controls each of the light-emitting units according to the received brightness control signal.