摘要:
A composite core for an electrical cable, the composite core defining a longitudinal axis that defines a center of the composite core, the core comprising a plurality of longitudinally extending reinforcing fibers embedded in a resin matrix, the fibers oriented substantially parallel to the longitudinal axis and a sheath surrounding the plurality of longitudinally oriented fibers. The sheath may further comprise a plurality of off-axis reinforcing fibers oriented at an angle relative to the longitudinal axis surrounding the longitudinally extending fibers. The sheath may comprise a type of resin, including for example, thermosetting resin or thermoplastic resin.
摘要:
This invention relates to an aluminum conductor composite core reinforced cable (ACCC) and method of manufacture. An ACCC cable (300) has a composite core and at least one layer of aluminum conductor (306). The composite core (303) comprises a plurality of fibers from at least one fiber type in one or more matrix materials. According to the invention, unique processing techniques such a B-Staging and/or film-coating techniques can be used to increase production rates from a few feet per minute to sixty or more feet per minute.
摘要:
This invention relates to an aluminum conductor composite core reinforced cable (ACCC) and method of manufacture. An ACCC cable has a composite core surrounded by at least one layer of aluminum conductor. The composite core comprises a plurality of fibers from at least one fiber type in one or more matrix materials. The composite core can have a maximum operating temperature capability above 100° C. or within the range of about −45° C. to about 240° C. or higher, at least 50% fiber to resin volume fraction, a tensile strength in the range of about 160 Ksi to about 370 Ksi, a modulus of elasticity in the range of about 7 Msi to about 37 Msi and a coefficient of thermal expansion in the range of about −0.6×10−6 per deg. C. to about 1.0×10−5 per deg. C. According to the invention, unique processing techniques such a B-Staging and/or film-coating techniques can be used to increase production rates from a few feet per minute to sixty or more feet per minute.
摘要:
This invention relates to an aluminum conductor composite core reinforced cable (ACCC) and method of manufacture. An ACCC cable has a composite core surrounded by at least one layer of aluminum conductor. The composite core comprises a plurality of fibers from at least one fiber type in one or more matrix materials. The composite core can have a maximum operating temperature capability above 100° C. or within the range of about −45° C. to about 240° C. or higher, at least 50% fiber to resin volume fraction, a tensile strength in the range of about 160 Ksi to about 370 Ksi, a modulus of elasticity in the range of about 7 Msi to about 37 Msi and a coefficient of thermal expansion in the range of about −0.6×10−6 per deg. C. to about 1.0×10−5 per deg. C. According to the invention, unique processing techniques such a B-Staging and/or film-coating techniques can be used to increase production rates from a few feet per minute to sixty or more feet per minute.
摘要:
A diffuser-augmented wind-turbine assembly in which the diffuser has a cylindrical central section rotatably supporting a rotor drum which in turn supports turbine blades without requiring a central support shaft. Wind energy drives the turbine blades and rotor drum, which in turn drive a generator of electrical power.
摘要:
This invention relates to splice and dead end fittings and methods for splicing together two aluminum conductor composite core reinforced cable (ACCC) or terminating one composite core reinforced cable. The compression fitting uses a compressible body inside a rigid enclosure to hold the composite cores. First, the composite cores can be stripped of the aluminum conductor to provide the best bond between the compressible body and the composite core, the load-bearing member of the cable. After inserting the composite core into the compressible body, a compression implement may be used to compress the compressible body. Without the ability to expand because the rigid enclosure forces the compressible body to maintain its shape, the compressible body places compressive forces on the composite core. The compressible body holds the composite core with frictional or mechanical forces.
摘要:
A method for the manufacture of a composite core for an electrical cable. The method may include pulling carbon fiber tows and glass fiber tows through a composite core processing system. The carbon fiber tows and the glass fiber tows are contacted with a resin, such as a thermosetting resin, to impregnate the fiber tows with the resin. The glass fiber tows are disposed on the outside of the carbon fiber tows to form a glass fiber layer around the carbon. The resin is then cured to form the composite core, which is adapted for use in an electrical transmission and distribution cable.
摘要:
A composite core for an electrical cable, the composite core defining a longitudinal axis that defines a center of the composite core, the core comprising a plurality of longitudinally extending reinforcing fibers embedded in a resin matrix, the fibers oriented substantially parallel to the longitudinal axis and a non-conductive insulating layer surrounding the plurality of longitudinally oriented fibers. The insulating layer may further comprise a plurality of glass fibers. The insulating layer may also comprise a type of resin, including for example, thermosetting resin or thermoplastic resin.
摘要:
This invention relates to an aluminum conductor composite core reinforced cable (ACCC) and method of manufacture. An ACCC cable has a composite core surrounded by at least one layer of aluminum conductor. The composite core comprises a plurality of fibers from at least one fiber type in one or more matrix materials. The composite core can have a maximum operating temperature capability above 100° C. or within the range of about 45° C. to about 230° C., at least 50% fiber to resin volume fraction, a tensile strength in the range of about 160 Ksi to about 370 Ksi, a modulus of elasticity in the range of about 7 Msi to about 37 Msi and a coefficient of thermal expansion in the range of about −0.7×10−6 m/m/° C. to about 6×10−6 m/m/° C. According to the invention, a B-stage forming process may be used to form the composite core at improved speeds over pultrusion processes wherein the speeds ranges from about 9 ft/min to about 60 ft/min.
摘要翻译:本发明涉及铝导体复合芯增强电缆(ACCC)及其制造方法。 ACCC电缆具有由至少一层铝导体包围的复合芯。 复合芯包括在一种或多种基质材料中来自至少一种纤维类型的多根纤维。 复合芯可以具有高于100℃的最大工作温度能力或在约45℃至约230℃的范围内,至少50%的纤维与树脂的体积分数,在约 m / m /°的范围内的弹性模量在约7 Msi至约37 Msi的范围内,热膨胀系数在约-0.7×10 -6 m / m / C.至约6×10 -6 m / m /℃。根据本发明,可以使用B阶成型方法在拉挤成型工艺上以改进的速度形成复合芯,其中速度范围 从约9ft / min到约60ft / min。
摘要:
This invention relates to an aluminum conductor composite core reinforced cable (ACCC) and method of manufacture. An ACCC cable has a composite core surrounded by at least one layer of aluminum conductor. The composite core comprises a plurality of fibers from at least one fiber type in one or more matrix materials. The composite core can have a maximum operating temperature capability above 100° C. or within the range of about −45° C. to about 230° C., at least 50% fiber to resin volume fraction, a tensile strength in the range of about 160 Ksi to about 370 Ksi, a modulus of elasticity in the range of about 7 Msi to about 37 Msi and a coefficient of thermal expansion in the range of about −0.7×10−6 m/m/° C. to about 6×10−6 m/m° C. According to the invention, a B-stage forming process may be used to form the composite core at improved speeds over pultrusion processes wherein the speeds ranges from about 9 ft/min to about 60 ft/min.
摘要翻译:本发明涉及铝导体复合芯增强电缆(ACCC)及其制造方法。 ACCC电缆具有由至少一层铝导体包围的复合芯。 复合芯包括在一种或多种基质材料中来自至少一种纤维类型的多根纤维。 复合芯可以具有高于100℃的最大工作温度能力或在-45℃至约230℃的范围内,至少50%的纤维与树脂的体积分数,拉伸强度在 约160Ksi至约370Ksi,弹性模量在约7 Msi至约37 Msi的范围内,热膨胀系数在约-0.7×10 -6 m / m 2 / ℃至约6×10 -6 m / m℃。根据本发明,可以使用B阶成型方法在拉挤成型方法上以改进的速度形成复合芯,其中速度范围 从约9ft / min到约60ft / min。