摘要:
A switchable diaphragm (9) and a device for beam deflection (10) are placed in the servo branch of an optical drive, in a path of light beams of different diffraction orders. This permits redirection of light beam orders towards a detection means (8) on an individual basis and selection of light orders at a detection means (8) depending on requirements. The number of detectors in the device detection means (8) can thus be reduced, thereby also reducing additional components associated with those detectors and saving on cost and complexity. With such device functionality, new methods for measuring beam landing and spherical aberration are developed.
摘要:
A optical scanning device (1) for scanning an information layer (2) with a radiation beam (25) in a writing mode and a reading mode comprises a radiation source (7) for emitting the beam and an objective lens (10) for converging the beam so as to form a scanning spot (19) in the information layer. The device also includes a scanning spot power switch (20) for switching the size of the cross-section of the beam between a first size at the writing mode and a second, larger size at the reading mode so as to switch the rim intensity of the beam between a first intensity level (Irim,writing) at the writing mode and a second, higher intensity level (Irim,reading) at the reading mode, thereby switching the light power of the scanning spot between a first power level (Pwriting) at the writing mode and a second, lower power level (Preading) at the reading mode.
摘要:
A method is proposed that allows a static design of an optical pickup unit (OPU) that delivers two output beams (30, 32). Both laser beams (30, 32) result in successive spots, which have the appropriate characteristics. In this OPU concept both read and write spots are present at the same time, and they are sufficiently spaced apart in the focus direction. This allows switching from the read situation to the write situation by introducing an appropriate focus offset in the electronics. The two output beams (30,32) are generated from a polarized incoming beam, said polarized incoming beam is split by a tilted birefringent grating (18).
摘要:
The present invention provides a discretely adjustable lens (300) that is controllable by means of electrostatic or electrowetting forces. The lens provides two accurately reproducible and freely designable lens states that are defined by interfaces between one out of two fluids (120,121) and at least one lens face (155). Changing place of the fluids by means of electrostatic or electrowetting forces provides for switching between the lens states. The lens may, for example, provide a macro lens option in a camera lens arrangement.
摘要:
An optical input and/or control de and/or actuating variable functions of, for examp device, the optical input and/or control device ha radiation from a diode laser (3) is converged. As across the window (12), part of the scattered radi due to the movement of the finger (15), re-enters measured using the self-mixing effect of the lase radiation emitted by the laser (3) and re-entering of the laser and thus in the radiation emitted by photo-diode (4) which converts the radiation vari circuitry is provided which processes this signal. ice for manually selectively controlling e, an image capture device or a computer mg a transparent window (12) on which an object, e.g. a user's finger (15), moves tion, whose frequency is Doppler-shifted the laser cavity. Relative movement is diode (3), which is the phenomenon that e laser cavity induces a variation in gain e laser (3). The change can be detected by a tion into an electric signal and electronic
摘要:
A beam-shaping element comprises a cavity, a first: fluid and a second fluid having different indices of refraction. An optical axis extends through the cavity. The cavity has at least one curved surface extending transverse the optical axis. At least one pump is arranged to pump the fluids between a first configuration in which the first fluid occupies the cavity, and a second configuration in which the second fluid occupies the cavity.
摘要:
A zoom lens comprising, from the object side to the image side, a front lens group (72), a controllable lens group, and a rear lens group (74), the controllable lens group comprising a voltage-controlled electrowetting device, which device contains a first fluid (A) and a second fluid (B) having different refractive indices, with at least two first fluid-second fluid interfaces (40,42). The curvatures, and thus the lens power, of these interfaces can be changed independently by supplying a voltage (V1, V2) to electrodes (22,32) of the device, so that no mechanical movement of lens elements is needed.
摘要:
Body cover, comprising a substrate, for covering at least part of a human body, and at least one electroluminescent source coupled to the substrate, for illuminating at least a part of the body, wherein the cover is configured to at least partly surround at least a part of the body and/or a body support. Method for radiating at least part of a human body, especially in the treatment of jaundice and/or crigler najjar, comprising covering at least part of the body and/or a body support with a cover with at least one electroluminescent source and emitting light from the electroluminescent source to at least part of the body.
摘要:
A variable lens (100; 200; 300; 400; 500; 600) is described. The lens (100; 200; 300; 400; 500; 600) comprises a chamber (125) defined by at least one side wall and having an optical axis (90) extending longitudinally through the chamber. The chamber (125) contains a first fluid (130) and a second fluid (140) in contact over a meniscus (150) extending transverse the optical axis (90). The perimeter of the meniscus (150) is constrained by the side walls (125). The fluids (130, 140) are substantially immiscible, and have different indices of refraction. At least one pump (110; 112, 114, 116, 152; 422) is arranged to controllably alter the position of the meniscus (150) along the optical axis (90) by altering the relative volume of each of the fluids (130, 140) contained within the chamber (125).
摘要:
In the described method of producing a plurality of bodies bearing equal imprints of a stamp as optical structures, a stamp (13) is initially produced, by attaching particles (14) to a surface (15) of an auxiliary body (16); than, the stamp (13) is used to produce an imprint (11) on a plurality of bodies (10). Optical structures can be irradiated, producing on a screen a speckle pattern indicative of a key. It is substantially impossible to clone a given optical structure with current technological means. Optical structures represent physical One-Way Functions, easy to compute in the forward sense but unfeasible to reverse. Thus, they can be used to build an access/copy protection system of user information contained in an information carrier associated with the body 10. The reproducibility of the optical structures makes this method suitable for optical disks.