摘要:
Body cover, comprising a substrate, for covering at least part of a human body, and at least one electroluminescent source coupled to the substrate, for illuminating at least a part of the body, wherein the cover is configured to at least partly surround at least a part of the body and/or a body support. Method for radiating at least part of a human body, especially in the treatment of jaundice and/or crigler najjar, comprising covering at least part of the body and/or a body support with a cover with at least one electroluminescent source and emitting light from the electroluminescent source to at least part of the body.
摘要:
Body cover, comprising a substrate, for covering at least part of a human body, and at least one electroluminescent source coupled to the substrate, for illuminating at least a part of the body, wherein the cover is configured to at least partly surround at least a part of the body and/or a body support. Method for radiating at least part of a human body, especially in the treatment of jaundice and/or crigler najjar, comprising covering at least part of the body and/or a body support with a cover with at least one electroluminescent source and emitting light from the electroluminescent source to at least part of the body.
摘要:
The present invention provides a discretely adjustable lens (300) that is controllable by means of electrostatic or electrowetting forces. The lens provides two accurately reproducible and freely designable lens states that are defined by interfaces between one out of two fluids (120,121) and at least one lens face (155). Changing place of the fluids by means of electrostatic or electrowetting forces provides for switching between the lens states. The lens may, for example, provide a macro lens option in a camera lens arrangement.
摘要:
An optical input and/or control de and/or actuating variable functions of, for examp device, the optical input and/or control device ha radiation from a diode laser (3) is converged. As across the window (12), part of the scattered radi due to the movement of the finger (15), re-enters measured using the self-mixing effect of the lase radiation emitted by the laser (3) and re-entering of the laser and thus in the radiation emitted by photo-diode (4) which converts the radiation vari circuitry is provided which processes this signal. ice for manually selectively controlling e, an image capture device or a computer mg a transparent window (12) on which an object, e.g. a user's finger (15), moves tion, whose frequency is Doppler-shifted the laser cavity. Relative movement is diode (3), which is the phenomenon that e laser cavity induces a variation in gain e laser (3). The change can be detected by a tion into an electric signal and electronic
摘要:
A beam-shaping element comprises a cavity, a first: fluid and a second fluid having different indices of refraction. An optical axis extends through the cavity. The cavity has at least one curved surface extending transverse the optical axis. At least one pump is arranged to pump the fluids between a first configuration in which the first fluid occupies the cavity, and a second configuration in which the second fluid occupies the cavity.
摘要:
A zoom lens comprising, from the object side to the image side, a front lens group (72), a controllable lens group, and a rear lens group (74), the controllable lens group comprising a voltage-controlled electrowetting device, which device contains a first fluid (A) and a second fluid (B) having different refractive indices, with at least two first fluid-second fluid interfaces (40,42). The curvatures, and thus the lens power, of these interfaces can be changed independently by supplying a voltage (V1, V2) to electrodes (22,32) of the device, so that no mechanical movement of lens elements is needed.
摘要:
A switchable diaphragm (9) and a device for beam deflection (10) are placed in the servo branch of an optical drive, in a path of light beams of different diffraction orders. This permits redirection of light beam orders towards a detection means (8) on an individual basis and selection of light orders at a detection means (8) depending on requirements. The number of detectors in the device detection means (8) can thus be reduced, thereby also reducing additional components associated with those detectors and saving on cost and complexity. With such device functionality, new methods for measuring beam landing and spherical aberration are developed.
摘要:
A variable lens (100; 200; 300; 400; 500; 600) is described. The lens (100; 200; 300; 400; 500; 600) comprises a chamber (125) defined by at least one side wall and having an optical axis (90) extending longitudinally through the chamber. The chamber (125) contains a first fluid (130) and a second fluid (140) in contact over a meniscus (150) extending transverse the optical axis (90). The perimeter of the meniscus (150) is constrained by the side walls (125). The fluids (130, 140) are substantially immiscible, and have different indices of refraction. At least one pump (110; 112, 114, 116, 152; 422) is arranged to controllably alter the position of the meniscus (150) along the optical axis (90) by altering the relative volume of each of the fluids (130, 140) contained within the chamber (125).
摘要:
In the described method of producing a plurality of bodies bearing equal imprints of a stamp as optical structures, a stamp (13) is initially produced, by attaching particles (14) to a surface (15) of an auxiliary body (16); than, the stamp (13) is used to produce an imprint (11) on a plurality of bodies (10). Optical structures can be irradiated, producing on a screen a speckle pattern indicative of a key. It is substantially impossible to clone a given optical structure with current technological means. Optical structures represent physical One-Way Functions, easy to compute in the forward sense but unfeasible to reverse. Thus, they can be used to build an access/copy protection system of user information contained in an information carrier associated with the body 10. The reproducibility of the optical structures makes this method suitable for optical disks.
摘要:
The optical analysis system (20) for determining an amplitude of a principal component of an optical signal comprises a multivariate optical element (10) for reflecting the optical signal and thereby weighing the optical signal by a spectral weighing function, and a detector (9, 9P, 9N) for detecting the weighed optical signal. The optical analysis system (20) may further comprise a dispersive element (2) for spectrally dispersing the optical signal, the multivariate optical element being arranged to receive the dispersed optical signal. The blood analysis system (40) comprises the optical analysis system (20) according to the invention.