摘要:
This invention provides an integrated system and process for forming light olefins and polymers from oxygenates, and optionally from natural gas. The integrated system includes an air separation unit, which separates air components into an oxygen stream and a nitrogen stream, and which also forms a compressed air stream. According to the present invention, the oxygen stream, the nitrogen stream and/or the compressed air stream from the air separation unit may serve as a reactant in syngas generation, as a regeneration medium in the methanol-to-olefins reaction system, as a fluidizing stream, as a blanketing medium, as a stripping medium, as instrument air, and/or as a reactant in a sulfur removal unit.
摘要:
The present invention is a process for cleaning and using byproduct water from an oxygenate to olefin process to satisfy the water requirement of the oxygenate to olefin process.
摘要:
This invention is directed to removing contaminants from an oxygenate-containing feedstream for an oxygenate to olefin reaction system. Oxygenate feeds used in the conversion of oxygenates to olefins, and which contain contaminants, are heated to form a vapor stream and a liquid stream. The heating is conducted so that a majority of the metalloaluminophosphate molecular sieve catalyst contaminants is contained in the liquid stream. The vapor stream is separated from the liquid stream, and the separated vapor stream is contacted with the metalloaluminophosphate molecular sieve catalyst to form olefin product. The heating of the feedstream and the separation of the vapor stream can be carried out in one or more stages.
摘要:
This invention is directed to removing contaminants from an oxygenate-containing feedstream for an oxygenate to olefin reaction system. Oxygenate feeds used in the conversion of oxygenates to olefins, and which contain contaminants, are heated to form a vapor stream and a liquid stream. The heating is conducted so that a majority of the metalloaluminophosphate molecular sieve catalyst contaminants is contained in the liquid stream. The vapor stream is separated from the liquid stream, and the separated vapor stream is contacted with the metalloaluminophosphate molecular sieve catalyst to form olefin product. The heating of the feedstream and the separation of the vapor stream can be carried out in one or more stages.
摘要:
A technique for recovering heat from a high temperature effluent stream from catalyst regeneration or the like, comprising processes and means for: (a) passing the effluent stream in heat exchange relationship in a steam generator with boiler feed water to produce high pressure steam and partially cool the effluent stream; (b) passing the partially cooled effluent stream from the steam regenerator in heat exchange relationship to preheat high pressure boiler feed water and further cool the effluent stream; and (c) passing the preheated boiler feed water to the steam generator. The apparatus and processes for thermal energy recovery may be used to treat hot regenerator effluent from FCC or OTO-type processes, thereby producing a cooled flue gas stream to discharge to ambient atmosphere.
摘要:
The invention relates to a process for converting an oxygenate feedstock into an olefin product stream comprising (a) contacting an oxygenate feedstock with a molecular sieve catalyst in a reactor under conditions effective to convert the feedstock into an olefin product stream and to form carbonaceous deposits on the catalyst; (b) contacting at least a portion of the catalyst having said carbonaceous deposits with an oxygen containing gas under conditions effective to obtain a regenerated catalyst having a reduced carbonaceous deposit level and having an increased molecular oxygen content; (c) removing at least 60% by volume of said molecular oxygen from the regenerated catalyst based upon the total volume of molecular oxygen; (d) returning said regenerated catalyst to said reactor; and (e) repeating steps (a)–(d).
摘要:
This invention provides a process for limiting the loss of catalyst particles through olefin product streams and regenerator flue gas streams exiting the reaction system. In particular, this invention provides for removing catalyst particles from the reactor using a water stream and from the regenerator using a two step separation process. The two step process involves the use of a catalyst fine separation unit.
摘要:
Disclosed herein is a method of recovery of the activity of a molecular sieve catalyst following use of the catalyst in an OTO conversion process. This is achieved by a regeneration apparatus and a method of regenerating a molecular sieve catalyst, comprising two stages. In a pretreatment stage, the catalyst is pretreated under pretreatment conditions by heating the catalyst to a temperature of between 320° C. to 700° C. in an oxygen depleted medium for a residence time of between 1 minute to two hours; and, in a regeneration stage, the catalyst is regenerated under regeneration conditions by heating the catalyst at a temperature of between 200° C. to 700° C. in an oxidizing medium for a residence time of between 1 to 60 minutes.
摘要:
This invention is directed to a process for producing one or more olefins from an oxygenate feed. According to the invention, an oxygenate stream is provided and a recycle stream is added to the oxygenate stream to form a feed stream to an oxygenate-to-olefin conversion system. The recycle stream comprises (i.e., contains) propane and dimethyl ether.
摘要:
This invention relates to efficiently regenerating catalyst particles by minimizing the formation of localized “hot spots” and “cold spots” in a regeneration zone. Specifically this invention relates to a method for controlling regenerator temperature in an oxygenates-to-olefins system, comprising the steps of: contacting an oxygenate feed in a reactor with a catalytically effective amount of molecular sieve-containing catalyst under conditions effective for converting said oxygenate to a product containing light olefins and forming a coked catalyst; contacting a portion of the coked catalyst in a regenerator, having a catalyst bed height (Hc), an inlet height (Hi), and an outlet height (Ho), with an oxygen-containing regeneration medium under conditions effective to at least partially regenerate the coked catalyst; and conducting a portion of the catalyst from the regenerator to a catalyst cooler to form a cooled catalyst portion, wherein Ho is greater than Hi.