摘要:
A method for forming a resistive switching device. The method includes providing a substrate having a surface region and forming a first dielectric material overlying the surface region. A first wiring structure is formed overlying the first dielectric material. The method forms one or more first structure comprising a junction material overlying the first wiring structure. A second structure comprising a stack of material is formed overlying the first structure. The second structure includes a resistive switching material, an active conductive material overlying the resistive switching material, and a second wiring material overlying the active conductive material. The second structure is configured such that the resistive switching material is free from a coincident vertical sidewall region with the junction material.
摘要:
Provision of fabrication, construction, and/or assembly of a two-terminal memory device is described herein. The two-terminal memory device can include an active region with a silicon bearing layer, an interface layer, and an active metal layer. The interface layer can created comprising a non-stoichimetric sub-oxide that can be a combination of multiple silicon and/or silicon oxide layers with an aggregate chemical formula of SiOX, where X can be a non-integer greater than zero and less than 2. The sub-oxide can be created in a variety of ways, including various techniques related to growing the sub-oxide, depositing the sub-oxide, or transforming an extant film into the sub-oxide.
摘要:
Provision of fabrication, construction, and/or assembly of a two-terminal memory device is described herein. The two-terminal memory device can include an active region with a silicon bearing layer, an interface layer, and an active metal layer. The interface layer can created comprising a non-stoichiometric sub-oxide that can be a combination of multiple silicon and/or silicon oxide layers with an aggregate chemical formula of SiOX, where X can be a non-integer greater than zero and less than 2. The sub-oxide can be created in a variety of ways, including various techniques related to growing the sub-oxide, depositing the sub-oxide, or transforming an extant film into the sub-oxide.
摘要:
A method of forming a resistive device includes forming a first wiring layer overlying a first dielectric on top of a substrate, forming a junction material, patterning the first wiring layer and junction material to expose a portion of the first dielectric, forming a second dielectric over the patterned first wiring layer, forming an opening in the second dielectric to expose a portion of the junction material, forming a resistive switching material over the portion of the junction material in the opening, the resistive switching material having an intrinsic semiconductor characteristic, forming a conductive material over the resistive switching material, etching the conductive material and the resistive switching material to expose respective sidewalls of the resistive switching material and the conductive material, and the second dielectric, and forming a second wiring layer over the conductive material in contact with the respective sidewalls and the second dielectric.
摘要:
A method for forming a resistive switching device. The method includes providing a substrate having a surface region and forming a first dielectric material overlying the surface region. A first wiring structure is formed overlying the first dielectric material. The method forms one or more first structure comprising a junction material overlying the first wiring structure. A second structure comprising a stack of material is formed overlying the first structure. The second structure includes a resistive switching material, an active conductive material overlying the resistive switching material, and a second wiring material overlying the active conductive material. The second structure is configured such that the resistive switching material is free from a coincident vertical sidewall region with the junction material.
摘要:
A memory device comprising a doped conductive polycrystalline layer having an electrically resistive portion, is described herein. By way of example, ion implantation to a subset of the conductive polycrystalline layer can degrade and modify the polycrystalline layer, forming the electrically resistive portion. The electrically resistive portion can include resistive switching properties facilitating digital information storage. Parametric control of the ion implantation can facilitate control over corresponding resistive switching properties of the resistive portion. For example, a projected range or depth of the ion implantation can be controlled, allowing for preferential placement of atoms in the resistive portion, and fine-tuning of a forming voltage of the memory device. As another example, dose and number of atoms implanted, type of atoms or ions that are implanted, the conductive polycrystalline material used, and so forth, can facilitate control over switching characteristics of the memory device.