摘要:
A nitrocarburized crankshaft member made of a steel having essentially ferrite and perlite, and at least a portion of a steel surface thereof having a ferrite surface area of 50% or greater that is imparted with a nitrocarburized hard layer. The steel consists of C, Si, Mn, Cu, Ni, and Cr as required elements and Mo, N, s-Al, Ti, Pb, Bi, and Ca as optional elements that may be included, and Fe and inevitable impurities. C is within a range of 0.25 to 0.32%. The nitrocarburized crankshaft member includes a thickness of a surface compound layer of the nitrocarburized hard layer of 10 to 35 μm that is formed during establishment of a diffusion depth of a nitrogen diffusion zone below the surface compound layer of 700 μm or greater.
摘要:
Provided is a method of manufacturing a nitrocarburized crankshaft which is obtained by subjecting a bainitic microalloyed steel to a forging and a machining, and further subjecting the bainitic microalloyed steel to at least a strain releasing heat treatment and a subsequent nitrocarburizing treatment, the bainitic microalloyed steel containing, as essentially added elements, in terms of mass %: 0.10% to 0.40% of C; 0.10% to 1.0% of Si; 1.0% to 2.0% of Mn; 0.05% to 0.40% of Mo; and 0.05% to 0.40% of V, and the bainitic microalloyed steel optionally further containing, as arbitrarily added elements, in terms of mass %: 0.01% to 0.1% of S; 0.005% to 0.2% of Ti; 0.001% to 0.03% of Al; 0.50% or less of Cr; 0.5% or less of Cu; and 0.5% or less of Ni, with the balance being Fe and unavoidable impurities.
摘要:
The present invention relates to a part obtained from an age hardening type bainitic microalloyed steel, a process for producing the part, and the age hardening type bainitic microalloyed steel. In particular, the present invention relates to a part which has been controlled so as to have higher values of strength than conventional parts, a process for producing the part, and the age hardening type bainitic microalloyed steel.
摘要:
The present invention provides an age hardening type bainitic microalloyed steel having a composition which includes, in terms of mass %: 0.06-0.35% of C; 0.01-2.00% of Si; 0.10-3.00% of Mn; 0.001-0.200% of S; 0.001-2.00% of Cu; 0.40-3.00% of Ni; 0.10-3.00% of Cr; 0.10-1.00% of Mo; 0.10-1.00% of V; and 0.001-0.100% of s-Al, with the remainder being Fe and unavoidable impurities, and which satisfies a value of the following expression (1) to be 20 or larger and a value of the following expression (2) to be 0.82 or larger: 3×[C]+10×[Mn]+2×[Cu]+2×[Ni]+12×[Cr]+9×[Mo]+2×[V] expression (1); 1.66×[C]+0.18×[Si]+0.27×[Mn]+0.09×[Ni]+0.32×[Cr]+0.34×[Mo]+0.44×[V] expression (2), in which each [ ] in the expression (1) and the expression dicates a content of the element shown therein in terms of mass %.
摘要:
A bulk heterojunction-type organic photovoltaic cell, i.e., BHJ solar cell, has a photoelectric conversion layer containing a mixture of a donor domain and an acceptor domain. The donor domain contains a polymer as a donor (photoelectric conversion material), and the polymer is obtained by reaction of a polyphenylene having a structural unit selected from moieties represented by the following general formulae (1) to (3). For example, the acceptor domain contains phenyl-C61-butyric acid methyl ester (PCBM) as an acceptor. R1 to R8 in the general formulae (1) to (3) independently represent a hydrogen atom, an alkyl group, or an alkoxy group.
摘要:
A bulk heterojunction-type organic photovoltaic cell, i.e., BHJ solar cell, has a photoelectric conversion layer containing a mixture of a donor domain and an acceptor domain. The donor domain contains a polymer as a donor (photoelectric conversion material), and the polymer is obtained by reaction of a polyphenylene represented by the following general formula (1). For example, the acceptor domain contains phenyl-C61-butyric acid methyl ester (PCBM) as an acceptor. At least one of R1 to R6 in the general formula (1) is an alkoxy group, and R7 to R10 independently represent a hydrogen atom, an alkyl group, or an alkoxy group.