Abstract:
Embodiments of the present disclosure provide a direct current (DC) power supply system, comprising: a medium voltage AC switchgear, configured to distribute a medium voltage three-phase AC received from an external supply for a next stage; a phase-shift transformer serving as the next stage, coupled to the medium voltage AC switchgear, and configured to lower the medium voltage three-phase received and output four or more groups of low voltage three-phase AC; and an uncontrolled rectifying circuitry, comprising a plurality of uncontrolled rectifiers configured to receive the four or more groups of low voltage three-phase AC respectively and output a low voltage DC; wherein the four or more groups of low voltage three-phase AC have a predetermined phase difference between each other.
Abstract:
The present application provides a mixed control method for a resonant converter, a resonant converter system and a mixed controller. When the resonant converter operates in a case where a voltage gain is less than a predetermined value, the method includes: setting a mixed control start frequency, a mixed control stop frequency and a slope of a phase-shifting angle; detecting an operating frequency of the converter; calculating a time delay of phase shifting according to the slope, the mixed control start frequency, the mixed control stop frequency and a resonant frequency of the resonant converter; and according to the time delay, the mixed control start and stop frequencies, generating a control signal to adjust the operating frequency and the phase-shifting angle of the resonant converter. The present application can realize a relatively low voltage gain and a small circuit loss, thereby the circuit efficiency may be improved.
Abstract:
A power converter device, includes switching devices and a controller, to realize conversion between power supplies by controlling on and off the switching devices via the controller. The switching devices include: at least one normally-on type switching device and at least one normally-off type switching device both having an operation frequency greater than 1 kHz and connected in series. The controller outputs a first and second control signal to correspondingly control the normally-on type switching device and the normally-off type switching device to control the normally-off type switching device to be turned on after the normally-on type switching device to be turned off. The present disclosure uses the normally-off type switching device originally disposed in the circuit, having a voltage blocking ability, to realize directly usage of the normally-on type switching device to improve efficiency and power density of switching power supply.
Abstract:
A method for controlling a resonant DC/DC power converting circuit is provided. The resonant DC/DC power converting circuit having a converter output and a converter input comprises at least two converters having similar structures and outputs connected in parallel as said converter output, and a controller. Each converter comprises a full-bridge inverter unit and a resonant unit. The full-bridge inverter unit is configured with at least four switches. The resonant unit is coupled with said full-bridge inverter unit. The controller outputs two groups of driving control signals to drive four switches in said two converters respectively. The method comprises: making said two converters operate at the same frequency and interleave with preset phase shift; and making two of driving control signals in one group interleave with preset angle to reduce output current of said converter corresponding controlled thereby, when output currents of said two converters are not approximately equal.
Abstract:
A power supply system includes a first converting stage, a second converting stage, and a third converting stage. The first converting stage is configured to generate a first voltage according to a first input voltage. The second converting stage is coupled to the first converting stage in series, and includes a first non-regulated power converter and a second non-regulated power converter. The first non-regulated power converter is configured to generate a second voltage according to the first voltage. The second non-regulated power converter is configured to generate a third voltage according to the second voltage. The second voltage is higher than the third voltage, and a varying range of the second voltage is wider than a varying range of the third voltage. The third converting stage is configured to generate a first output voltage according to the third voltage.
Abstract:
The present disclosure provides power semiconductor module, comprising at least three non-jumping power terminals at a non-jumping potential, wherein multiple power semiconductors and at least one first capacitor are integrated within a package and electrically connected between a first non-jumping power terminal and a second non-jumping power terminal of the at least three non-jumping power terminals; and at least one jumping power terminal at a jumping potential. A first jumping power terminal of the at least one jumping power terminal is electrically connected to one terminal of a power inductor and a third non-jumping power terminal of the at least three non-jumping power terminals is electrically connected to the other terminal of the power inductor; wherein at least one second capacitor is electrically connected between the third non-jumping power terminal and at least one of other non-jumping power terminals.
Abstract:
The present disclosure provides power module, comprising at least three non-jumping power terminals at a non-jumping potential, wherein multiple power devices and at least one first capacitor are electrically connected between a first non-jumping power terminal and a second non-jumping power terminal of the at least three non-jumping power terminals; and at least one jumping power terminal at a jumping potential. A first jumping power terminal of the at least one jumping power terminal is electrically connected to one terminal of a power inductor and a third non-jumping power terminal of the at least three non-jumping power terminals is electrically connected to the other terminal of the power inductor; wherein at least one second capacitor is electrically connected between the third non-jumping power terminal and at least one of other non-jumping power terminals.
Abstract:
A power converting circuit includes a converter. The converter receives and converts an input power to provide power for a load. The converter includes a power storage unit, a switch unit, a capacitor unit, and a current sampling unit. The power storage unit includes input and output terminals. The switch unit includes first and second switches, which are series connected at a common terminal, and the common terminal is coupled to the output terminal of the power storage unit. The capacitor unit includes first and second capacitors. The first capacitor and the switch unit are parallel connected to form a capacitor-switch parallel structure. The second capacitor capacitance is more than ten times larger than the first capacitor capacitance. The current sampling unit and the capacitor-switch parallel structure are series connected to form a capacitor-sampling unit series structure. The capacitor-sampling unit series structure and the second capacitor are parallel connected.
Abstract:
The DC-DC converter includes a first bridge and a second bridge. The first bridge includes a first switch and a second switch, whereas the second bridge includes a third switch and a fourth switch. The second bridge is in parallel connection with the first bridge. The second switch is in series connection with the first switch, and the fourth switch is in series connection with the third switch. The DC-DC converter switches between a first mode and a second mode based on a detection signal. Further, a method for controlling the DC-DC converter is also disclosed herein.
Abstract:
A magnetic structure includes at least one bobbin and a core. Each of the bobbin has at least one winding portion in which a through passage is provided along its longitudinal direction, the core has at least one column, the column is received in the through passage so that a heat dissipation space is formed between an outer wall of the column and an inner wall of the through passage. In the magnetic structure according to the present disclosure, during the operation of the magnetic structure, the heat generated from the column and from an inner layer of a coil wound on the winding portion both can be quickly dissipated through the heat dissipation space, and thus the heat dissipation efficiency of the magnetic structure according to the present disclosure is improved.