Abstract:
A rotating electric machine includes a multi-phase coil, an armature core, a rotor, a yoke core and a superimposer. The armature core has the multi-phase coil wound thereon. The rotor is rotatably disposed and has a plurality of magnetic poles facing the armature core. The yoke core is arranged so as to surround outer peripheries of the multi-phase coil and the armature core. The yoke core is magnetically connected with the magnetic poles of the rotor. The superimposer superimposes a DC component on a multi-phase alternating current supplied to the multi-phase coil, thereby supplying a DC field magnetic flux to a magnetic circuit that is formed by the armature core, the magnetic poles of the rotor and the yoke core.
Abstract:
An outer rotor-type rotating electric machine includes a rotor and a stator. The rotor includes a plurality of magnets each of which extends in a circumferential direction of the rotor and is magnetized in a radial direction of the rotor. The stator is disposed radially inside the rotor. The stator has a plurality of stator teeth formed in a radial pattern. Each of the stator teeth has an inner circumferential width at its radially inner end and an outer circumferential width at its radially outer end. Moreover, the following relationship is satisfied: Wi/Wo≧0.6, where Wi is the inner circumferential width and Wo is the outer circumferential width of each of the stator teeth.
Abstract:
In an electric rotating machine, a stator has an armature coil wound around an armature core segments with M pairs of poles, and N pairs of field sources (field coil and field magnetic field), a rotor has K soft magnetic members including a plurality of protrusions on a side facing the stator, and the armature coil, the field sources, and the soft magnetic members satisfy a relational expression of |M±N|=K. With this configuration, rotors are rotated based on the magnetic modulation principle, so that field poles can have alternating electromagnetic action on the armature coil, and the performance of the electric rotating machine can be improved with a brushless structure.
Abstract:
A double-stator electric rotating machine with a retainer. The retainer includes a connector which joints between an outer stator and an inner stator. The retainer is placed in contact with an outer peripheral surface of the outer stator and an inner peripheral surface of the inner stator to retain the outer and inner stators together. Specifically, the retainer works to join the outer stator and the inner stator together and also to tightly hold the outer periphery of the outer stator and the inner periphery of the inner stator, thus minimizing misalignment of the outer and inner stators in axial and radial directions there of.
Abstract:
A double-stator rotating electric machine includes a rotor and a pair of outer and inner stators. The outer stator has a first multi-phase coil wound thereon so as to form magnetic poles upon energization of the first multi-phase coil. The inner stator has a second multi-phase coil wound thereon so as to form magnetic poles upon energization of the second multi-phase coil. The number of the magnetic poles formed by the outer stator is equal to the number of the magnetic poles formed by the inner stator. Each of the magnetic poles formed by the outer stator is located at the same circumferential position as and has an opposite polarity to a corresponding one of the magnetic poles formed by the inner stator. The rotor has yoke portions each of which radially extends so as to form a magnetic flux passage magnetically connecting the outer and inner stators.
Abstract:
A two-shaft compound motor includes a first rotating machine made of a magnetic modulation motor, a second rotating machines made of an electric motor, and a lockup mechanism. The first and second rotating machines are aligned on same axial line. The first rotating machine includes a first rotating shaft, a first stator, a first rotor made of a magnetic induction rotor, and a second rotor made of a magnet rotor. One of the first and second rotors is provided to be integrally rotatable with the first rotating shaft. The second rotating machine includes a second rotating shaft, a second stator, and a third rotor. The third rotor is mechanically coupled with the other of the first and second rotors, and is provided such as to be integrally rotatable with the second rotating shaft. The lockup mechanism is capable of mechanically direct-coupling the first rotating shaft and the second rotating shaft.
Abstract:
A multi-gap rotating electric machine includes a rotor, a stator core and a stator coil. The stator core has inner and outer core parts respectively located radially inside and outside of the rotor and each having partially or fully closed slots. The stator coil is formed of electric conductor segments each having a first leg portion inserted in one of the slots of the inner core part, a second leg portion inserted in one of the slots of the outer core part, and a connecting portion connecting the first and second leg portions on one axial side of the rotor. The first and second leg portions respectively have radially inner and outer coil end parts formed on the opposite axial side to the connecting portion. Corresponding radially inner coil end parts are joined to each other, and corresponding radially outer coil end parts are joined to each other.
Abstract:
A rotating electric machine includes an armature and a field rotor. The field rotor includes magnetic pole teeth, an annular body portion, a bypass gap portion and permanent magnets. The magnetic pole teeth are arranged so that the polarities thereof alternate between N and S in a circumferential direction of the field rotor. The annular body portion connects the magnetic pole teeth at their root portions. The bypass gap portion is provided on an opposite side of the annular body portion to the magnetic pole teeth. The permanent magnets are provided in the annular body portion so as to be spaced from one another in the circumferential direction. The bypass gap portion includes first magnetic gaps each of which is formed adjacent to one of the permanent magnets. Each of the permanent magnets is arranged within an inter-pole angular range between one circumferentially-adjacent pair of the magnetic pole teeth.
Abstract:
A double-stator rotating electric machine includes a rotor, an outer stator disposed radially outside the rotor with an outer gap formed therebetween, and an inner stator disposed radially inside the rotor with an inner gap formed therebetween. The outer stator has an outer multi-phase coil wound thereon, and the inner stator has an inner multi-phase coil wound thereon. Moreover, the inner gap formed between the inner stator and the rotor is set to be larger than the outer gap formed between the outer stator and the rotor.
Abstract:
A rotor securing arrangement for directly or indirectly securing a rotor to a shaft. The rotor has at least one through hole along a axial direction of the rotor. A second hole diameter of the at least one through hole at either or both of axial ends of the rotor is greater than a first hole diameter of the at least one through hole at a portion other than the axial ends of the rotor. The rotor securing arrangement includes a first securing member corresponding to the first hole diameter of the at least one through hole, and a second securing member corresponding to the second hole diameter of the at least one through hole. The first securing member is configured to directly or indirectly secure the rotor to the shaft with at least a portion of the second securing member between the first securing member and the rotor.