Abstract:
A collision prediction apparatus including: an object detection section that detects an object present ahead of an own vehicle; and a collision prediction position calculation section that calculates a collision prediction position that is a position where the object is predicted to collide with the own vehicle in the future based on a position of the object detected by the object detection section relative to the own vehicle, wherein the collision prediction position calculation section corrects the collision prediction position when the object detected by the object detection section is traveling in an opposite direction to the own vehicle at a position deviated from a traveling direction of the own vehicle, and the own vehicle turns in a direction crossing a traveling direction of the object.
Abstract:
A collision determination device for determining the probability of a collision between an own vehicle and a target in the predetermined determination area surrounding the own vehicle includes an orientation detection unit for detecting the orientation of the target relative to the own vehicle, an image sensor for capturing images surrounding the own vehicle, an angle calculation unit for calculating an angle θ0 formed by the movement direction of the own vehicle and the movement direction of the target, and a collision determination unit which uses image data acquired from the image sensor to calculate the state of a lane compartment line, and determines the probability of a collision between the own vehicle and the target based on the angle θ0 and the calculation result of the lane compartment line.
Abstract:
A traveling assistance apparatus controls a safety apparatus for avoiding collision between an own vehicle and an object, based on detection information from an object detection apparatus. The assistance apparatus calculates a predicted time to collision of a target object and the own vehicle, and operates the safety apparatus in response to the predicted time to collision being equal to or less than a predetermined operation timing. In response to a steering operation by a driver for collision avoidance of the own vehicle being performed, the assistance apparatus performs operation-stop in which operation of the safety apparatus is stopped or operation-delay in which the operation timing is delayed. The assistance apparatus suppresses the operation-stop or the operation-delay in response to a target object serving as a collision avoidance target being recognized in a path of the own vehicle after the steering operation by the driver, based on the detection information.
Abstract:
When a vehicle is stopped in an intersection by automatic emergency braking, secondary braking is prohibited in S305, a hazard lamp flashes in S310, and an idling stop is prohibited in S320. After it is determined in S325 that the vehicle is stopped, when it is determined in S330 that it is safe for the vehicle to start moving, stop maintenance braking is released in S340.
Abstract:
The target detecting device comprises a radar sensor, an imaging sensor, and an ECU. The target detected by the radar sensor is selected under certain conditions, for example, i) a reception intensity of the reflected radar waves is equal to or more than a predetermined value, or ii) the target is moving, to be outputted externally. When a stopped vehicle is detected on a road by the sensor, and a target, for example a pedestrian, present behind the stopped vehicle is detected from the image acquired by the imaging sensor by performing image recognition using predetermined patterns of a target, the ECU makes the selection condition less restrictive than the selection condition for targets other than the target present behind the stopped vehicle, or unconditionally selects the target present behind the stopped vehicle.
Abstract:
Provided is a vehicle braking support device. The braking support device includes: detection units for detecting a state around a host vehicle; a braking support control unit for executing braking support by a braking device according to the detected state; and a vehicle stop control unit for maintaining a stopped state of a host vehicle after the host vehicle is stopped by the braking support control unit, and for releasing the stopped state of the host vehicle after a predetermined period has elapsed. The vehicle stop control unit, in a case where by using the detected state it is determined that it is desirable to maintain the stopped state of the host vehicle beyond the predetermined period, the vehicle stop control unit does not release the stopped state of the host vehicle until an operation by a driver is detected.
Abstract:
A collision prediction apparatus includes a radar-detection target position detection section, a pattern matching execution section that detects an image detection target, an image-detection target position detection section, an identical target determination section that determines that the radar detection target and the image detection target are an identical target when a positional relationship between the both targets becomes a predetermined relationship; a collision prediction section that predicts whether the own vehicle is likely to collide with an identical target as an object, and a support execution section that performs driving support when a collision between the own vehicle is predicted. In the apparatus, the collision prediction section predicts whether the radar detection target, as the object, is likely to collide with the own vehicle, under conditions that the object is turning in a direction approaching the own vehicle, and that the image detection target can no longer be detected.
Abstract:
In a collision avoidance apparatus for a vehicle, a collision avoidance controller is configured to calculate a movement trajectory of a moving object moving on a road crossing a road that the vehicle is traveling on from a succession of locations of the moving object, calculate a movement trajectory of the vehicle using a speed of the vehicle, determine whether the movement trajectory of the moving object is a trajectory of a moving object likely colliding with the vehicle, and in response to determining that the movement trajectory of the moving object is a trajectory of a moving object likely colliding with the vehicle and that the moving object fails to be recognized by a camera due to a view of the moving object being obstructed, calculate a risk index for determining a collision avoidance measure and employ the collision avoidance measure in dependence upon the risk index.
Abstract:
A collision avoidance device for a vehicle is provided. The collision avoidance device includes an object sensing unit for sensing an object, an attribute acquisition unit for using a sensing result from the object sensing unit to acquire an attribute of an oncoming vehicle, and a collision avoidance execution unit for executing at least one of a notification of a possibility of collision and a collision avoidance operation, if it is determined, based on the attribute acquired by the attribute acquisition unit, that the oncoming vehicle crosses a center line.
Abstract:
A braking assistance device for a vehicle includes an object sensing unit for sensing an object, an intersection entry determination unit for determining entry of a host vehicle into an intersection, and a braking assistance execution unit for executing braking assistance by a braking device so as to avoid or mitigate collision with the object. If the host vehicle is determined to be entering the intersection, the braking assistance execution unit determines, based on a sensing result from the object sensing unit, a traffic environment at the intersection, and controls execution of the braking assistance in accordance with the determined traffic environment.