Abstract:
A power source apparatus mounted to a vehicle is equipped with a lead-acid battery and a lithium battery. An open circuit voltage and an internal resistance of each of the batteries are determined to satisfy the following conditions (a1), (a2), and (a3): (a1) In the use range of SOC of the lead-acid battery and the use range of SOC of the lithium battery, there is an equal voltage point Vds at which the open circuit voltage V0 (Pb) of the lead-acid battery becomes equal to the open circuit voltage V0 (Li) of the lithium battery; (a2) The relationship of V0 (Li)>V0 (Pb) is satisfied in the upper limit side of the use range of SOC of the battery; and (a3) A terminal voltage Vc (Li) of the lithium battery is not more than a set voltage Vreg of a regulator when a maximum current flows in the lithium battery.
Abstract:
A thermal conductive mechanism for a battery pack made up of a stack of a plurality of sub-battery modules each of which includes a plurality of battery cells arrayed thereon. The sub-battery modules each has opposed major surfaces and are laid to overlap each other in a direction perpendicular to the major surfaces. The thermal conductive mechanism is equipped with plates provided one for each of the sub-battery modules. Each of the plates has a given number of the battery cells disposed thereon and also has heat transfer surfaces extending in a planar direction of the plate. The heat transfer surfaces are placed in one of direct and indirect contact with the given number of the battery cells to achieve transfer of heat therebetween, thereby equalizing the temperature in each of the battery cells and also minimizing a difference in temperature among the battery cells.