Abstract:
A blank for milling or grinding a dental article, the blank having a plate-shaped body adapted to be received in a blank holder of a CAM system, which plate-shaped body comprises one or more ceramic or glass ceramic blank portions and two or more through holes, wherein each through hole is contiguous with at least one of the ceramic or glass ceramic blank portions for receiving a working end of a milling or grinding tool of the CAM system.
Abstract:
The invention relates to a method for manufacturing a colored blank, which contains zirconium dioxide and is intended for the manufacture of a dental restoration, whereby raw materials in powder form, at least some of which contain one coloring substance each, are mixed with, zirconium dioxide as the main ingredient, the resulting mixture is pressed and subsequently subjected to at least one thermal treatment. To generate the desired fluorescence, it is intended that in the raw materials in powder form one uses as coloring substances at least terbium, erbium, cobalt, as well as one substance that generates a fluorescence effect in the dental restoration, however not iron, aside from naturally occurring impurities.
Abstract:
The invention relates to a method for the production of a dental restoration from a blank, which has regions or layers of ceramic materials with differing compositions, under use of the method steps, filling of the ceramic materials into a mold, pressing of the ceramic materials to form a blank, removal of the blank from the mold, temperature treatment of the blank, wherein the ceramic materials are filling into the mold in such a way that layers and/or regions after temperature treatment have a profile that is available as a digital set. There is then a virtual contouring of the dental restoration taking shrinkage into account, a virtual representation of the blank, positioning of the virtually represented dental restoration in the virtually represented blank taking into account the material characteristics of the layers and/or regions, determination of the data for the blank which correspond to the position of the virtually arranged dental restoration or the mold in the blank, as well as transfer of the data to a machine to produce the dental restoration from the blank.
Abstract:
The invention relates to a method to increase the strength of a form body of lithium silicate glass ceramic, which after it has a desired end geometry and after the application of a material which influences its surface to form a coating, is subject to a heat treatment. To create a surface compressive stress through the replacement of lithium ions by alkali ions of greater diameter at least that region not covered by the application layer is covered by a melt or paste consisting of or containing a salt of an alkali metal with ions of greater diameter and the form body is in contact with the melt or paste for a period of time t at a temperature T and the melt or paste is subsequently removed from the form body.
Abstract:
The present invention is related to a pink colored pre-sintered or fully-sintered blank for use for the production of a dental restoration, such as a denture base of a full or a partial denture, a partial denture, or an implant supported denture, consisting of a ceramic material which comprises zirconium dioxide doped with yttrium oxide (Y2O3), calcium oxide (CaO), magnesium oxide (MgO) and/or cerium oxide (CeO2), wherein the pink colored blank comprises 2 to 25 wt %, preferably 4 to 17 wt %, and more preferably 5 to 12 wt %, erbium oxide.
Abstract:
The invention relates to a method for the production of a blank of a ceramic material, wherein a first ceramic material and then a second ceramic material of different compositions are filled into a mold and wherein the materials are pressed and after pressing are sintered. Thereby, a layer of the first ceramic material is filled into the mold, a first open cavity is formed in the layer, the second ceramic material is filled into the first open cavity and the materials are pressed together and are then heat-treated. Both the first ceramic material and the second ceramic material contain, or consists of, lithium silicate glass ceramic.
Abstract:
The invention relates to a method for positioning a blank (116), which after insertion in a holder is in contact therewith, wherein the holder has a structural element. The blank (16) is positioned in the holder by means of an adapter (118), which is inserted in both the holder or the structural element and the blank, wherein the adapter positively engages with the holder or the structural element and with the blank.
Abstract:
The invention relates to a medical form body of lithium silicate glass ceramic. To increase its strength it is proposed that in the form body comprising lithium silicate glass or containing lithium silicate glass the lithium ions are replaced by alkali ions of greater diameter to generate a surface compressive stress. To this end the form body is covered with a melt containing an alkali metal for which an aliquoted quantity of salt containing the alkali metal is used.
Abstract:
The present invention is related to a method for producing a ceramic multilayer blank comprising at least a first layer of a first ceramic material and at least a second layer of a second ceramic material, wherein the first layer and the second layer are made of ceramic materials of different compositions, which are filled in pourable condition layer-by-layer into a mold and thereafter they are pressed and then sintered, wherein the first layer is a pink colored layer, wherein the first ceramic material comprises 2 to 25 wt % erbium oxide.
Abstract:
The invention relates to a blank from a ceramic material, wherein at least two layers of ceramic material of different compositions are filled into a die layer-by-layer and after filling of the layers they are then pressed and sintered, wherein after filling of a first layer this is structured on its surface in such a way that the first layer, viewed across its surface, differs in its height from region to region, and then a layer with a composition that differs from the first layer is filled as a second layer into the mold.