Abstract:
To spread flux evenly across the entire surface of a rectangular meltable conductor, a protective element includes: an insulating substrate; a heat-generating resistor disposed on the insulating substrate; a first and a second electrodes laminated onto the insulating substrate; a heat-generating element extracting electrode overlapping the heat-generating resistor in a state electrically insulated therefrom and electrically connected to the heat-generating resistor on a current path between the first and the second electrodes; a rectangular meltable conductor laminated between the heat-generating element extracting electrode and the first and the second electrodes for interrupting a current path between the first electrode and the second electrode by being melted by heat; and a plurality of flux bodies disposed on the meltable conductor; wherein the flux bodies are disposed along the heat-generating resistor.
Abstract:
A protective element includes: a rectangurarly shaped insulating substrate; a heat-generating element formed on the insulating substrate; first and second electrodes laminated on a surface of the insulating substrate; first and second connecting terminals provided on a back surface of the insulating substrate and being continuous with the first and second electrodes; a heat-generating element extracting electrode provided on a current path between the first and the second electrodes and electrically connected to the heat-generating element; and a meltable conductor laminated on a region extending from the heat-generating element extracting electrode to the first and second electrodes and to be melted by heat to interrupt the current path between the first electrode and the second electrodes; wherein at least one of the corner portions of the insulating substrate is chamfered.
Abstract:
A switch device capable of safely opening or short-circuiting an electrical circuit in response to an abnormality such as wetting with water or liquid leaking from a battery is provided. The device includes first and second conductors connected to an external circuit, and a reaction part including an insulating material which changes state on contact with a liquid, the first and second conductors being electrically connected or disconnected by the insulating material changing state on contact with the liquid.
Abstract:
In a protective circuit substrate having a circuit substrate and a protective element, the protective element including: an insulating substrate; a heat-generating element; first and second electrodes laminated on the insulating substrate; a first and second connecting terminals provided on one side edge of a mounting surface to be mounted to the circuit substrate, the first connecting terminals being continuous with the first and second electrodes; a heat-generating element extracting electrode provided in a current path between the first and second electrodes and electrically connected to the heat-generating element; and a meltable conductor provided between the first and second electrodes, wherein the circuit substrate includes a region for mounting the protective element in which no electrode pattern other than a connecting electrode to the protective element is provided.
Abstract:
A protective element including a substrate having a first insulating member and a concave portion formed thereon, a heating body layered on the concave portion of the substrate, a second insulating member layered on the substrate so as to cover at least covering the heating body, first and second electrodes layered on a surface of the substrate on which the second insulating member is layered, a heating body electrode layered on the second insulating member so as to be superimposed with the heating body, and electrically connected to a current path between the first and the second electrodes as well as onto and the heating body, and a low-melting point metal layered from the heating body electrode toward the first and the second electrodes configured to cause a blowout of the current path between the first and the second electrodes by heating.
Abstract:
A protection element (10) of the present invention has a substrate (11), a first fuse element (12) and a second fuse element (13) connected in series on the substrate (11), a heater (14) connected between the first fuse element (12) and the second fuse element (13), a third upper electrode part (17) connected between the first fuse element (12) and the second fuse element (13) and connected to the heater (14) in series, a first conduction part (18) connected to the third upper electrode part (17) and having a lower resistance value than the heater (14), and a third lower electrode part (19) connected to the first conduction part (18) and configured to be connectable to an external protection circuit.
Abstract:
FIG. 1 is a top perspective view of a fuse showing my new design; FIG. 2 is a bottom perspective view thereof; FIG. 3 is a front view thereof, the rear view being identical; FIG. 4 is a right side thereof; FIG. 5 is a left side view thereof; FIG. 6 is a top view thereof; FIG. 7 is a bottom view thereof; FIG. 8 is a cross-section end view taken along line 8-8 in FIG. 3; and, FIG. 9 is a cross-section end view taken along line 9-9 in FIG. 4. The broken lines in the drawings depict portions of the fuse taht form no part of the claimed design.