Abstract:
Systems and methods are disclosed for timed introduction of samples into a mass spectrometer may include receiving a plurality of sample ion pulses in a mass spectrometer from a sampling interface, where the sample ion pulses are received at a pre-determined time pattern; detecting the received sample ion pulses to generate a signal; isolating an analyte signal by signal conditioning the generated signal based on the pre-determined time pattern; and identifying a presence of an analyte based on the isolated analyte signal. The signal conditioning may include pulse-based averaging based on the pre-determined time pattern or may include converting the generated signal to a frequency-domain signal and calculating a modulus to isolate the analyte signal. The pre-determined time pattern may be periodic where the signal conditioning comprises performing a Fourier Transform on the signal to convert it to a frequency-domain signal.
Abstract:
An m/z range of an ion beam is divided into two or more precursor ion mass selection windows. A pattern of two or more different window m/z ranges to be used during two or more successive cycles for at least one precursor ion mass selection window is determined. The pattern includes an initial window m/z range and one or more successively different window m/z ranges. Each of the one or more successively different window m/z ranges includes at least a portion of the initial window m/z range. A tandem mass spectrometer is instructed to select and fragment the two or more precursor ion mass selection windows during each cycle of a plurality of cycles and to repeatedly use the pattern for each group of two or more successive cycles of the plurality of cycles for the selection and fragmentation of the at least one precursor ion mass selection window.
Abstract:
One or more known compounds of a sample are ionized. At least one precursor ion corresponding to a compound of the one or more known compounds is selected and fragmented, producing a product ion mass spectrum for the precursor ion. An m/z tolerance probability function that varies from 1 to 0 with increasing values of an m/z difference between two mass peaks and that includes one or more values between 1 and 0 is received. A library product ion mass spectrum for the at least one compound is retrieved from a memory. An m/z difference between at least one experimental product ion mass peak in the product ion mass spectrum and at least one library product ion mass peak in the library product ion mass spectrum is calculated. An m/z tolerance probability that determines if the two peaks are corresponding peaks is calculated from the m/z difference using the probability function.
Abstract:
Systems and methods are provided to perform dead time correction. An observed ion count rate is obtained using a non-paralyzable detection system of a mass spectrometer. The detection system includes an ion detector, a comparator/discriminator, a mono-stable circuit and a counter. The non-paralyzable detection system exhibits dead time extension at high count rates. The extension of the dead time occurs because the mono-stable circuit requires a rising edge to trigger and can only be triggered again after the output pulse from the comparator/discriminator has gone low. This allows a second comparator/discriminator pulse arriving just before the end of the dead time started by a first comparator/discriminator pulse to extend the dead time to the trailing edge of the second comparator/discriminator pulse. A true ion count rate is calculated by performing dead time correction of the observed ion count rate.
Abstract:
A precursor ion transmission window is moved in overlapping steps across a precursor ion mass range. The precursor ions transmitted at each overlapping step by the mass filter are fragmented or transmitted. Intensities or counts are detected for each of the one or more resulting product ions or precursor ions for each overlapping window that form mass spectrum data for each overlapping window. Each unique product ion detected is encoded in real-time during data acquisition. This encoding includes sums of counts or intensities of each unique ion detected the overlapping windows and positions of the windows associated with each sum. The encoding for each unique ion is stored in a memory device rather than the mass spectral data. A deblurring algorithm or numerical method is used to determine a precursor ion of each unique ion from the encoded data.
Abstract:
Systems and methods are used to predict intensities for points not measured or not measured with a high degree of confidence of a peak using a peak predictor. A set of data is selected from the plurality of intensity measurements that includes a peak. Confidence values are assigned to each data point in the set of data producing a plurality of confidence value weighted data points. A peak predictor is selected. The peak predictor is applied to the plurality of confidence value weighted data points of the peak that have confidence values greater than a first threshold level using the prediction module, producing predicted intensities for data points of the peak not measured and/or measured data points of the peak that have confidence values less than or equal to a second threshold level. The confidence values can include system confidence values, predictor confidence values, or any combination of the two.
Abstract:
Systems and methods are provided for calculating the area of a peak profile using information from one or more correlated peak profiles. One or more compounds are separated from a mixture over time using a separation device. Traces of the one or more compounds are monitored during the separation using a tandem mass spectrometer. A plurality of intensity measurements are received using a processor. A first peak profile for a compound of interest is detected from the plurality of intensity measurements for a first trace and one or more correlated peak profiles for the compound of interest are detected from the plurality of intensity measurements for one or more other traces using the processor. An area of the first peak profile is calculated based on the one or more correlated peak profiles using the processor.
Abstract:
A system is disclosed for identifying a precursor ion of a product ion in a scanning DIA experiment. A precursor ion mass selection window is scanned across a precursor ion mass range of interest, producing a series of overlapping windows across the precursor ion mass range. Each overlapping window is fragmented and mass analyzed, producing a plurality of product ion spectra for the mass range. A product ion is selected from the spectra. Intensities for the selected product ion are retrieved for at least one scan across the mass range producing a trace of intensities versus precursor ion m/z. A matrix multiplication equation is created that describes how one or more precursor ions correspond to the trace for the selected product ion. The matrix multiplication equation is solved for one or more precursor ions corresponding to the selected product ion using a numerical method.
Abstract:
Systems and methods are provided for calculating the area of a peak profile using information from one or more correlated peak profiles. One or more compounds are separated from a mixture over time using a separation device. Traces of the one or more compounds are monitored during the separation using a tandem mass spectrometer. A plurality of intensity measurements are received using a processor. A first peak profile for a compound of interest is detected from the plurality of intensity measurements for a first trace and one or more correlated peak profiles for the compound of interest are detected from the plurality of intensity measurements for one or more other traces using the processor. An area of the first peak profile is calculated based on the one or more correlated peak profiles using the processor.
Abstract:
Systems and methods are provided to perform dead time correction. An observed ion count rate is obtained using a non-paralyzable detection system of a mass spectrometer. The detection system includes an ion detector, a comparator/discriminator, a mono-stable circuit and a counter. The non-paralyzable detection system exhibits dead time extension at high count rates. The extension of the dead time occurs because the mono-stable circuit requires a rising edge to trigger and can only be triggered again after the output pulse from the comparator/discriminator has gone low. This allows a second comparator/discriminator pulse arriving just before the end of the dead time started by a first comparator/discriminator pulse to extend the dead time to the trailing edge of the second comparator/discriminator pulse. A true ion count rate is calculated by performing dead time correction of the observed ion count rate.