Abstract:
A separation device is instructed to separate a compound from a sample over a time period. A mass spectrometer is instructed to measure a plurality of intensities of at least one ion of the separated compound over the time period, producing a chromatogram. At least one peak of the at least one ion is identified from the chromatogram using a peak-finding algorithm. Two or more different peak integration areas are calculated for the at least one peak by applying the peak-finding algorithm with two or more different values for at least one peak-finding parameter. Two or more plots of the at least one peak that each shows graphically a different peak integration area are displayed on a display device at the same time. In response, data is received from a user selection device that indicates user selection of one of the two or more plots.
Abstract:
A system is disclosed for identifying precursor ions originating from an ion source device. A mass filter filters an ion beam by using a series of overlapping precursor ion mass selection windows across the precursor ion mass range. A mass analyzer analyzes the precursor ions of each precursor ion mass selection window of the series, producing a plurality of precursor ion spectra for the precursor ion mass range. A precursor ion is selected from the spectra. The intensities for the selected precursor ion are retrieved from the spectra and a trace is produced that describes how the intensity of the selected precursor ion varies with the location of the precursor ion mass selection window. The selected precursor ion is identified as a precursor ion originating from the ion source device if the trace includes a nonzero intensity for the m/z value of the selected precursor ion.
Abstract:
A system is disclosed for identifying precursor ions originating from an ion source device. A mass filter filters an ion beam by using a series of overlapping precursor ion mass selection windows across the precursor ion mass range. A mass analyzer analyzes the precursor ions of each precursor ion mass selection window of the series, producing a plurality of precursor ion spectra for the precursor ion mass range. A precursor ion is selected from the spectra. The intensities for the selected precursor ion are retrieved from the spectra and a trace is produced that describes how the intensity of the selected precursor ion varies with the location of the precursor ion mass selection window. The selected precursor ion is identified as a precursor ion originating from the ion source device if the trace includes a nonzero intensity for the m/z value of the selected precursor ion.
Abstract:
A separation device is instructed to separate a compound from a sample over a time period. A mass spectrometer is instructed to measure a plurality of intensities of at least one ion of the separated compound over the time period, producing a chromatogram. At least one peak of the at least one ion is identified from the chromatogram using a peak-finding algorithm. Two or more different peak integration areas are calculated for the at least one peak by applying the peak-finding algorithm with two or more different values for at least one peak-finding parameter. Two or more plots of the at least one peak that each shows graphically a different peak integration area are displayed on a display device at the same time. In response, data is received from a user selection device that indicates user selection of one of the two or more plots.
Abstract:
The present teachings are directed to methods and apparatuses for mass spectrometry that include configuring mass spectrometry apparatus to perform a plurality of separate assays on ions fragmented from a given analyte, where each such analysis by the spectrometry apparatus is targeted at a different respective associated mass-to-charge ratio and provides a quantitative measure of the number of fragments thereof.
Abstract:
A method is provided for mass spectrometry. The method includes generating precursor ions from a sample; transmitting the precursor ions into a collision cell; generating product ions in the collision cell; detecting the precursor and product ions; applying modulation to one or more of the precursor ion intensity and the product ion intensity; and identifying precursor ion and product ion relationships by analyzing intensity profiles defined by the modulation.
Abstract:
A method is provided for mass spectrometry. The method includes generating precursor ions from a sample; transmitting the precursor ions into a collision cell; generating product ions in the collision cell; detecting the precursor and product ions; applying modulation to one or more of the precursor ion intensity and the product ion intensity; and identifying precursor ion and product ion relationships by analyzing intensity profiles defined by the modulation.