Abstract:
Before each sample of a series of batch samples is introduced into a liquid sample delivery device, an ion source device receives aqueous mobile phase solution from the liquid sample delivery device and ionizes its compounds, producing an ion beam. A tandem mass spectrometer performs a neutral loss or precursor ion scan on the ion beam to measure intensities of two or more precursor ions corresponding to a known aqueous mobile phase solution compound. Intensity measurements for each of the two or more different precursor ions are compared to previously stored intensities to determine the threshold times at which these measurements indicate orifice contamination. A threshold time is then predicted for a known compound of interest of the batch samples based on the m/z value of the known compound of interest and the m/z value and the threshold time of each of the two or more different precursor ions.
Abstract:
An interference in a first MRM transition measurement for a compound of interest is determined by using a second MRM transition that includes an isotope of the precursor ion in the first MRM transition. Both transitions include the same product ion. A first intensity is measured for the first MRM transition and a second intensity is measured for the second MRM transition. A ratio of the first intensity to the second intensity is calculated. A theoretical ratio of the quantity of first precursor ion to the second precursor ion is calculated according to their isotopic relationship. A difference between the ratio and the theoretical ratio is calculated and compared to a threshold value. If the difference is less than the threshold value, the first intensity of the first MRM transition is identified as including an interference for the compound of interest.
Abstract:
In a DIA method, a specified precursor ion m/z range of interest is divided into a set of two or more precursor ion mass selection windows. A tandem mass spectrometer is instructed to select, dissociate using a first dissociation technique, and mass analyze each precursor ion mass selection window of the set within a specified cycle time. Product ion intensity and m/z measurements are produced for each window of the set using the first dissociation technique. The tandem mass spectrometer is also instructed to select, dissociate using a second dissociation technique, and mass analyze each precursor ion mass selection window of the set within the same cycle time. Product ion intensity and m/z measurements are produced for each window of the set using the second dissociation technique. Product ion measurements from both the first and second dissociation techniques are used to identify or quantitate compounds of a sample.
Abstract:
Before a sample is introduced into a liquid sample delivery device, an ion source device receives aqueous mobile phase solution from the liquid sample delivery device and ionizes compounds of the aqueous mobile phase solution, producing an ion beam. A tandem mass spectrometer performs a first neutral loss scan of the ion beam with a first neutral loss value set to a molecular weight of a first known solvent, producing a first intensity, and performs a second neutral loss scan of the ion beam with a second neutral loss value set to a molecular weight of a second known solvent, producing a second intensity. A ratio of the first intensity to the second intensity is calculated. It is determined if the aqueous mobile phase solution is properly being delivered by the liquid sample delivery device based on the ratio.
Abstract:
A system and method is described for characterizing glycopeptides which includes a first quadrupole mass filter, a multipole rod set of an ion guide, a lens electrode, an ExD device and a mass analyzer. The multipole rod set is adapted to receive a radial radio frequency (RF) trapping voltage and a radial dipole direct current (DC) voltage The lens electrode is adapted to receive an axial trapping alternating current (AC) voltage and a DC voltage. The ExD device performs electron capture dissociation or electron transfer dissociation, the ExD device being positioned so that an entrance of the ExD device is disposed on the other side of the lens electrode opposite the multipole rod set. The mass analyzer is positioned at an exit of the ExD device for receiving ions from the ExD device.
Abstract:
An interference in a first MRM transition measurement for a compound of interest is determined by using a second MRM transition that includes an isotope of the precursor ion in the first MRM transition. Both transitions include the same product ion. A first intensity is measured for the first MRM transition and a second intensity is measured for the second MRM transition. A ratio of the first intensity to the second intensity is calculated. A theoretical ratio of the quantity of first precursor ion to the second precursor ion is calculated according to their isotopic relationship. A difference between the ratio and the theoretical ratio is calculated and compared to a threshold value. If the difference is less than the threshold value, the first intensity of the first MRM transition is identified as including an interference for the compound of interest.
Abstract:
Systems and methods are provided for providing a DMS precursor ion survey scan. An ion source configured to receive a sample is instructed to ionize the sample using a processor. A DMS device configured to receive ions from the ion source is instructed to separate precursor ions received from the ion source and transmit precursor ions using two or more CoVs using the processor. A mass analyzer configured to receive transmitted precursor ions from the DMS device is instructed to measure the m/z intensities of the transmitted precursor ions across an m/z range at each CoV of the two or more CoVs using the processor. The measured m/z intensities of the transmitted precursor ions received from the mass analyzer are stored as a function of m/z value and CoV using the processor. This produces a stored two-dimensional mapping of m/z intensities of the precursor ions of the sample.
Abstract:
In a first location of a mass spectrometer, a plurality of ionized molecules of an ion source are selected that have mass-to-charge ratios within a mass-to-charge ratio window width. The plurality of selected ionized molecules are transmitted from a first to a second location. Reagent ions are transmitted to the second location to reduce a charge state of one or more of the plurality of selected ionized molecules. A mass analyzer is used to analyze the plurality of reduced ionized molecules and produce a mass spectrum. A compound is identified from a peak of the spectrum that has a mass-to-charge ratio less than or equal to the highest mass-to-charge ratio in the window width if the noise is multiply charged and greater than the highest mass-to-charge ratio in the window width if the noise is singly charged.
Abstract:
Before each sample of a series of batch samples is introduced into a liquid sample delivery device, an ion source device receives aqueous mobile phase solution from the liquid sample delivery device and ionizes its compounds, producing an ion beam. A tandem mass spectrometer performs a neutral loss or precursor ion scan on the ion beam to measure intensities of two or more precursor ions corresponding to a known aqueous mobile phase solution compound. Intensity measurements for each of the two or more different precursor ions are compared to previously stored intensities to determine the threshold times at which these measurements indicate orifice contamination. A threshold time is then predicted for a known compound of interest of the batch samples based on the m/z value of the known compound of interest and the m/z value and the threshold time of each of the two or more different precursor ions.
Abstract:
In DM-SWATH a plurality of CoVs and a precursor ion mass range are received. A processor performs an iterative series of steps for each CoV of the plurality of CoVs. For each CoV of the plurality of CoVs, the CoV is applied to the DMS device to select a group of precursor ions. A mass filter is instructed to select precursor ions of the group that are within the precursor ion mass range, producing a subgroup of precursor ions. A fragmentation device is instructed to fragment the subgroup of precursor ions, producing a group of product ions. A mass analyzer is instructed to measure the intensity and m/z of the group of product ions, producing a product ion spectrum for each CoV of the plurality of CoVs. DM-SWATH is further used to validate if a known compound is in a sample.