摘要:
A video coding pipeline is provided that can accommodate high dynamic range (HDR) and wide color gamut (WCG) content at a fixed bitrate. The video coding pipeline relies on separate chromaticity and luminance-specific transforms in order to process image content. Image content may be converted into a nearly perceptually uniform color space for coding in constant luminance. Moreover, chromaticity transforms are utilized which reduce coding errors in the chroma components (at the fixed bitrate) by enlarging the distribution of code words for compression.
摘要:
One or more levels of maladaptation are calculated relative to frames of media content having abrupt jumps from periods of low illumination to bright illumination when visual acuity may be lost and/or discomfort may be experienced. These levels of maladaptation may be correlated with subjectively determined levels of perceived luminance discomfort. Based upon the levels of perceived luminance discomfort that can be derived from the levels of maladaptation, the media content may be adjusted.
摘要:
Systems and methods are disclosed for weighting the image quality prediction of any visual-attention-agnostic quality metric with a saliency map. By accounting for the salient regions of an image or video frame, the disclosed systems and methods may dramatically improve the precision of the visual-attention-agnostic quality metric during image or video quality assessment. In one implementation, a method of saliency-weighted video quality assessment includes: determining a per-pixel image quality vector of an encoded video frame; determining per-pixel saliency values of the encoded video frame or a reference video frame corresponding to the encoded video frame; and computing a saliency-weighted image quality metric of the encoded video frame by weighting the per-pixel image quality vector using the per-pixel saliency values.
摘要:
Novel systems and methods are described for creating, compressing, and distributing video or image content graded for a plurality of displays with different dynamic ranges. In implementations, the created content is “continuous dynamic range” (CDR) content—a novel representation of pixel-luminance as a function of display dynamic range. The creation of the CDR content includes grading a source content for a minimum dynamic range and a maximum dynamic range, and defining a luminance of each pixel of an image or video frame of the source content as a continuous function between the minimum and the maximum dynamic ranges. In additional implementations, a novel graphical user interface for creating and editing the CDR content is described.
摘要:
The disclosure describes a high dynamic range video coding pipeline that may reduce color artifacts and improve compression efficiency. The disclosed pipeline separates the luminance component from the chrominance components of an input signal (e.g., an RGB source video) and applies a scaling of the chrominance components before encoding, thereby reducing perceivable color artifacts while maintaining luminance quality.
摘要:
Algorithms for improving the performance of conventional tone mapping operators (TMO) by calculating both a contrast waste score and a contrast loss score for a first tone-mapped image produced by the TMO. The two contrast scores can be used to optimize the performance of the TMO by reducing noise and improving contrast. Algorithms for generating an HDR image by converting non-linear color space images into linear color space format, aligning the images to a reference, de-ghosting the aligned images if necessary, and merging the aligned (and potentially de-ghosted) images to create an HDR image. The merging can be performed with exposure fusion, HDR reconstruction, or other suitable techniques.