METHOD OF MAKING A COMPOSITE BIOTEXTILE AND A MEDICAL IMPLANT COMPRISING SUCH COMPOSITE BIOTEXTILE

    公开(公告)号:US20250065013A1

    公开(公告)日:2025-02-27

    申请号:US18946674

    申请日:2024-11-13

    Abstract: Methods of making a composite fabric for use in or as a medical implant component are disclosed whereby the method includes the steps of providing a textile comprising at least one strand having titer of 2-250 dtex and comprising fibers made from a biocompatible and biostable synthetic polymer; determining locations on the textile where a cut is to be made for an intended use of the textile; optionally pretreating the textile at least at the determined locations on at least one side of the textile with a high-energy source to activate the surface; solution coating the textile at least at a determined location with a coating composition comprising a biocompatible and biostable polyurethane elastomer and a solvent for the polyurethane; removing the solvent from the coated textile; and laser cutting the coated textile as obtained at least a one coated location with an ultra-short pulse laser; to result in a composite biotextile wherein polyurethane is present in an amount of 2.5-90 mass % based on composite biotextile and polyurethane is present at least at a laser-cut edge.

    METHOD OF MAKING A COMPOSITE BIOTEXTILE AND A MEDICAL IMPLANT COMPRISING SUCH COMPOSITE BIOTEXTILE

    公开(公告)号:US20220072199A1

    公开(公告)日:2022-03-10

    申请号:US17430736

    申请日:2020-03-02

    Abstract: Disclosed herein is a method of making a composite fabric for use in or as a medical implant component, the method comprising steps of providing a textile comprising at least one strand having titer of 2-250 dtex and comprising fibers made from a biocompatible and biostable synthetic polymer; determining locations on the textile where a cut is to be made for an intended use of the textile; optionally pretreating the textile at least at the determined locations on at least one side of the textile with a high-energy source to activate the surface; solution coating the textile at least at a determined location with a coating composition comprising a biocompatible and biostable polyurethane elastomer and a solvent for the polyurethane; removing the solvent from the coated textile; and laser cutting the coated textile as obtained at least a one coated location with an ultra-short pulse laser; to result in a composite biotextile wherein polyurethane is present in an amount of 2.5-90 mass % based on composite biotextile and polyurethane is present at least at a laser-cut edge. Such composite biotextile as made shows an advantageous combination of good biocompatibility, especially hemocompatibility, high strength and pliability, and has well-defined regular edges that have high suture retention strength. Further embodiments concern the use of such composite biotextile in or as medical implant component for an implantable medical device; such as in orthopedic applications and cardiovascular implants. Other embodiments include such medical devices or implants comprising said composite biotextile or medical implant component.

    MEDICAL IMPLANT COMPONENT COMPRISING A COMPOSITE BIOTEXTILE AND METHOD OF MAKING

    公开(公告)号:US20220023501A1

    公开(公告)日:2022-01-27

    申请号:US17430734

    申请日:2020-03-02

    Abstract: Disclosed herein is a medical implant component comprising a composite biotextile, which biotextile comprises i) a polyolefin fibrous construct comprising at least one strand with titer of 2-250 dtex, tensile strength of at least 10 cN/dtex and comprising high molar mass polyolefin fibers and ii) a coating comprising a biocompatible and biostable polyurethane elastomer comprising a polysiloxane segment and/or having one or more hydrophobic endgroups, wherein the polyurethane coating is present on at least part of the surface of the biotextile and in an amount of 2.5-90 mass % based on composite biotextile. Such composite biotextile, like a partly coated woven fabric, shows an advantageous combination of good biocompatibility, especially hemocompatibility, high strength and pliability, and laser cuttability; allowing to make pieces of fabric having well-defined regular edges that have high suture retention strength. The invention also provides a method of making said composite biotextile. Further embodiments concern the use of such biotextile in or as medical implant component for an implantable medical device and the use of such medical implant component in making an implantable medical device; such as in orthopedic applications and cardiovascular implants. Other embodiments include such medical devices or implants comprising said medical implant component.

    OSTEOCONDUCTIVE FIBERS, MEDICAL IMPLANT COMPRISING SUCH OSTEOCONDUCTIVE FIBERS, AND METHODS OF MAKING

    公开(公告)号:US20210299332A1

    公开(公告)日:2021-09-30

    申请号:US16976123

    申请日:2019-03-06

    Abstract: The disclosure relates to high-strength polyolefin composite fibers, which fibers have a fiber body comprising a composition consisting of polyolefin; 1-30 mass % of bioceramic particles having particle size D50 of 0.01-10 μm; at most 0.05 mass % of residual spin solvent; optionally 0-3 mass % of other additives; and wherein the sum of a)-d) is 100 mass %; and which fibers have bioceramic particles exposed at their surface, and show bioactivity. The composite fibers based on a composition of polyolefin with bioceramic particles mixed therein show particles being exposed at the fiber surface by techniques like AFM and XPS, and although apparently only a relatively small amount of bioceramic particles is exposed at the fiber surface, this appears sufficient for effective interaction with their environment and stimulating a positive biological response as demonstrated by in vitro cell studies.
    The present disclosure also concerns a method of making the high-strength composite fibers via a gel spinning process, fibrous articles comprising said bioactive composite fibers. Further embodiments concern use of these fibrous articles as a component of a medical implant or as a medical implant, especially as permanent high-strength orthopedic implants for repairing bone fractures or torn ligaments or tendons. Other embodiments include medical devices or implants comprising said fibrous articles.

Patent Agency Ranking