Abstract:
A laser beam (L50) generated by a laser light source (50) is reflected by a light beam scanning device (60) and irradiated onto a hologram recording medium (45). On the hologram recording medium (45), an image (35) of a scatter plate is recorded as a hologram by using reference light that converges on a scanning origin (B). The light beam scanning device (60) bends the laser beam (L50) at the scanning origin (3) and irradiates the laser beam onto the hologram recording medium (45). At this time, scanning is carried out by changing a bending mode of the laser beam with time so that an irradiation position of the bent laser beam (L60) on the hologram recording medium (45) changes with time. Regardless of an irradiation position of the beam, diffracted light (L45) from the hologram recording medium (45) produces a reproduction image (35) of the scatter is plate on the spatial light modulator (200). The modulated image of the spatial light modulator (200) is projected onto a screen (400) by a projection optical system (300).
Abstract:
An illumination device includes an optical element including a hologram recording medium capable of diffusing a coherent light beam, the hologram recording medium comprising a plurality of regions, each region diffusing a coherent light beam to an illuminated region corresponding to that region, and an irradiation device configured to irradiate the optical element with the coherent light beam so as to allow the coherent light beam to scan the hologram recording medium. The coherent light beam incident to a position existing in each region of the hologram recording medium is diffused to an entire region of the illuminated region corresponding to the region in order to illuminate the entire region of the illuminated region.
Abstract:
An illumination device has an optical device and an irradiation unit. The irradiation unit has a light source emitting a coherent light beam, and a scanning device capable of adjusting a reflection angle of the coherent light beam emitted from the light source. The light source has light sources emitting a plurality of coherent light beams having an identical wavelength range, the hologram recording medium has a recording area to be scanned with each of a plurality of coherent light beams reflected by the scanning device, and the recording area has an interference fringe that diffracts an incident coherent light beam. The optical device uses the plurality of coherent light beams diffracted by the interference fringe of the recording area so that each of the coherent light beams diffracted by the hologram recording medium is superimposed on at least one portion to reproduce the image of the reference member.
Abstract:
An optical device including a hologram recording medium that can reproduce an image of a reference member and an irradiation unit that emits a coherent light beam to the optical device. The irradiation unit includes a light source for emitting a coherent light beam and a scanning device capable of adjusting a reflection angle of the coherent light beam emitted from the light source and that makes a reflected coherent light beam scan the hologram recording medium. The light source has light sources for emitting coherent light beams having different wavelength ranges. The hologram recording medium has a plurality of recording areas to be scanned with a plurality of coherent light beams reflected by the scanning device, respectively. Each of the plurality of recording areas has an interference fringe that diffracts a coherent light beam of the corresponding wavelength range.
Abstract:
A daylighting system includes a sheet-like light control member disposed on at least an upper part of a daylighting opening, and a shade disposed oppositely to at least a part of the opening, the part being below the part where the light control member is disposed. The light control member is configured to change upward a traveling direction of incident light and allow the incident light to pass through the light control member.
Abstract:
Provided are a projection device and a projection-type video display device capable of displaying a plurality of videos, allowing speckles to be inconspicuous, and miniaturizing an optical system. A projection device includes an optical element including light diffusion elements capable of diffusing light, an irradiation device configured to irradiate the optical element with illumination light beams, each illumination light beam scanning the corresponding light diffusion element, spatial light modulators, each spatial light modulator being illuminated with illumination light beam which is incident from the irradiation device to each light diffusion element to be diffused, and projection optical systems, each projection optical system projecting modulation image obtained on each spatial light modulator on corresponding screen. The illumination light beam, which is incident to each position of each light diffusion element to be diffused, overlappedly illuminates on corresponding spatial light modulator.
Abstract:
An illumination device includes an optical element including a hologram recording medium capable of diffusing a coherent light beam, the hologram recording medium comprising a plurality of regions, each region diffusing a coherent light beam to an illuminated region corresponding to that region, and an irradiation device configured to irradiate the optical element with the coherent light beam so as to allow the coherent light beam to scan the hologram recording medium. The coherent light beam incident to a position existing in each region of the hologram recording medium is diffused to an entire region of the illuminated region corresponding to the region in order to illuminate the entire region of the illuminated region.
Abstract:
Provided are a projection device and a projection-type video display device capable of displaying a plurality of videos, allowing speckles to be inconspicuous, and miniaturizing an optical system. A projection device includes an optical element including light diffusion elements capable of diffusing light, an irradiation device configured to irradiate the optical element with illumination light beams, each illumination light beam scanning the corresponding light diffusion element, spatial light modulators, each spatial light modulator being illuminated with illumination light beam which is incident from the irradiation device to each light diffusion element to be diffused, and projection optical systems, each projection optical system projecting modulation image obtained on each spatial light modulator on corresponding screen. The illumination light beam, which is incident to each position of each light diffusion element to be diffused, overlappedly illuminates on corresponding spatial light modulator.
Abstract:
Provided are a projection device and a projection-type video display device capable of displaying a plurality of videos, allowing speckles to be inconspicuous, and miniaturizing an optical system. A projection device includes an optical element including light diffusion elements capable of diffusing light, an irradiation device configured to irradiate the optical element with illumination light beams, each illumination light beam scanning the corresponding light diffusion element, spatial light modulators, each spatial light modulator being illuminated with illumination light beam which is incident from the irradiation device to each light diffusion element to be diffused, and projection optical systems, each projection optical system projecting modulation image obtained on each spatial light modulator on corresponding screen. The illumination light beam, which is incident to each position of each light diffusion element to be diffused, overlappedly illuminates on corresponding spatial light modulator.