Abstract:
A light controlling sheet 14 is provided in a surface light source device 10a including a light source portion 13a. The light controlling sheet 14 includes an outgoing light side lens portion 141a having multiple unit lenses 141 arranged to project toward the outgoing light side, and transparent portions 143 and reflecting portions 144 provided on the incident light side. The transparent portions 143 and the reflecting portions 144 are arranged alternately, and the transparent portions 143 comprise 40% to 60% of the total area of the light controlling sheet 14 when viewed form a direction orthogonal to the sheet surface 14S on the incident light side.
Abstract:
The invention provides a computer-generated hologram which can be viewed in white at the desired viewing region and a reflective liquid crystal display using the same as a reflector. The computer-generated hologram H is designed to diffuse light having a given reference wavelength λSTD and incident thereon at a given angle of incidence θ in a specific angle range. In a range of wavelengths λmin to λmax including the reference wavelength λSTD wherein zero-order transmission light or zero-order reflection light of incident light on the computer-generated hologram at a given angle of incidence is seen in white by additive color mixing, the maximum diffraction angle β2MIN of incident light of the minimum wavelength λMIN in the wavelength range and incident at the angle of incidence θ is larger than the minimum diffraction angle β1MAX of incident light of the maximum wavelength λMAX in the wavelength range and incident at said angle of incidence θ.
Abstract:
The invention relates to a color hologram display an image of a three-dimensional object and a hologram image of a pattern of plane characters, images or the like are recorded in the same volume type hologram photosensitive material in a superposed or multiplexed fashion. A color hologram display 27′ comprising a combined reflection and volume type of single layer, wherein a color pattern 29g of plane characters, images or the like and a color three-dimensional subject image O″ are reconstructably recorded while spatially superposed one upon another.
Abstract:
A color hologram recording medium 2 includes volume hologram recording mediums 14R, 14G and 14B for diffracting light of wavelengths different from each other. Reconstruction patterns 1R, 1G and 1B of the volume hologram recording mediums 14R, 14G and 14B are recorded so that the reconstruction patterns 1R, 1G and 1B are reconstructed at reconstruction positions different from each other. Thus, the color hologram recording medium 2 can have a wide variety of designs and artistic characters that the recorded color reconstruction patterns vary depending on watched directions.
Abstract:
The invention is concerned with a volume hologram medium obtained by multiple recording of holograms, which is improved in terms of just only security for forgery prevention but also aesthetics. A volume hologram medium 29′ comprises a reflection hologram in which a stereoscopic image of a three-dimensional object and an image of a plane pattern of a mask plate are recorded by interference of the same reference light beams having the same angle of incidence and the same wavelength with object light beams having mutually different angles of incidence. The stereoscopic image of the three-dimensional object is reconstructed in the form of diffracted light 31 in a singlecolor and in angle relations close to recording conditions, and the image of a plane pattern of the mask plate is reconstructed as diffracted light 32b, 32′b at various angles of incidence of white illumination light 30 and in different colors depending on those angles of incidence. Thus, more improved aesthetics are achievable, and more enhanced security is ensured by determination of whether or not the volume hologram medium has such aesthetic properties.
Abstract:
There is provided a protective film to be bonded to a polarizer to form a lower polarizing plate for a liquid crystal display panel. The protective film for a lower polarizing plate includes a matrix of a resin material and a diffusing component dispersed in the matrix. At least one-side surface, which is to face the polarizer, of the protective film is flat.
Abstract:
An optical diffusing sheet is provided, which prevents deterioration in image quality which might result from warping of the sheets due to environmental changes, and is capable of, even if a substrate is broken by an accident, preventing scattering of pieces of the broken substrate. An optical diffusing sheet is used in a transmission type screen that emits imaging light projected from an incident side to an emergent side. The optical diffusing sheet includes a highly rigid substrate layer with a light-transmissibility and a high rigidity, and a plurality of layers laminated on the highly rigid substrate layer. The plurality of layers includes at least a pair of anti-scattering layers disposed on opposite sides of the highly rigid substrate layer for preventing scattering of the highly rigid substrate layer. At least one layer of the two or more layers includes an optical diffusing element that diffuses imaging light.
Abstract:
A hologram recording film has an image of a three-dimensional object, e.g. a three-dimensional model, recorded in a volume hologram photosensitive material and further has a hologram image of a plane color pattern, e.g. a character or an image, together with the shadow of the color pattern, recorded as individual information in a superimposed manner in the same photosensitive material without using a liquid crystal display. Pieces of plane additional information of the same pattern have been recorded so as to be capable of being reconstructed simultaneously in a hologram plane and in front of or behind the hologram plane, respectively, in superimposition with a reconstructed image from a volume hologram.
Abstract:
An optical member that will be incorporated in a surface light source unit and that is scarcely deformed while it is used as a component of the surface light source unit. The optical member comprises optical sheets layered on each other. The optical sheets at least includes: an outermost optical sheet on the light-entrance side, which is situated outermost on the light-entrance side; and a high-rigidity optical sheet situated on the light-exit side of the outermost optical sheet on the light-entrance side, a rigidity of the high-rigidity optical sheet being higher than a rigidity of the outermost optical sheet on the light-entrance side.
Abstract:
An optical module (20) includes a polarizing plate (40) and a light emitter (26) disposed in a position facing the polarizing plate. The polarizing plate includes a polarizer (41) and a protective film (50) joined to the polarizer (41). The protective film has a light control function that changes the traveling direction of light. The light emitter is disposed in a position directly facing the protective film of the polarizing plate.