摘要:
A solid polymer electrolyte membrane that has excellent methanol-crossover-suppression performance is provided, along with a fuel cell that employs the electrolyte membrane. The electrolyte membrane includes a matrix including a proton-conducting polymer such as perfluorocarbon sulfonic acid and a sheet substantially consisting of an inorganic fiber such as glass fiber.
摘要:
The present invention provides a method for making a microporous ceramic material and includes the steps of (a) preparing a starting material for firing comprising a nonoxide ceramic precursor containing silicon as an essential component; (b) heating the starting material for firing in an atmosphere containing at least 1 mol % of hydrogen so as to form microporous ceramic product; and (c) cooling the microporous ceramic product.
摘要:
According to the module 10, the other end 22 of each of the plurality of porous cylindrical bodies 12 the one end 20 of each of which is closed is opened to the gas chamber 58 between the end cap 18 and the end cover 54, and the end cap 18 is provided with the through-hole 53 leading from the gas chamber 56 outward, and the gas chamber 58 leads outward by means of a path passing through the through-hole 53 and through the porous cylindrical body 12. The module 10 can have a gas-passing path from the peripheral wall 24 of the porous cylindrical-body 12 outward through the gas chamber 58 and through the through-hole 53. Since the airtight sealing structure of the whole of the reaction container 60 can be formed independently of the airtight connecting structure of the through-hole 53 and the gas lead-out opening 64, the permeability and the like of the module 10 that has various dimensions can be measured by means of a common reaction container 60 formed to have a predetermined size and structure by forming the through-hole 53 in a predetermined form corresponding to the connecting structure with the gas lead-out opening 64, regardless of the size of the whole of the module 10.
摘要:
The present invention provides a method for making a microporous ceramic material and includes the steps of (a) preparing a starting material for firing comprising a nonoxide ceramic precursor containing silicon as an essential component; (b) heating the starting material for firing in an atmosphere containing at least 1 mol % of hydrogen so as to form microporous ceramic product; and (c) cooling the microporous ceramic product.