摘要:
An oxygen electrode used in the fuel cell and includes a plurality of carbon particles, a carbon thin-film, and surface nanostructure. The carbon particles are bonded to one another with the carbon thin-film, and the surface nanostructure is formed on the surface of the carbon thin-film. The surface nanostructure comprises catalyst nanoparticles made of platinum (Pt) and carbon nanoparticles. According to this combination of these elements, the catalyst nanoparticles are confined within three-dimensional structure to be formed by the carbon nanoparticles and are immobilized without losing space which allows any reactant to be accessed to the surface of the catalyst nanoparticles.
摘要:
The present invention is aimed to realize, in a fuel cell with an oxygen electrode (a catalytic electrode), both catalytic function and immobilization of the catalyst nanoparticles when the catalyst nanoparticles are very small nanoparticles in the size of 1-3 nm.Oxygen electrode used in the fuel cell according to the present invention is an oxygen electrode comprising a plurality of carbon particles, a carbon thin-film, and surface nanostructure, wherein the carbon particles are bonded to one another with the carbon thin-film 2, the surface nanostructure is formed on the surface of the carbon thin-film, the surface nanostructure comprises catalyst nanoparticles made of platinum (Pt) and carbon nanoparticles, diameter of each of the carbon particles is 30 nm or more and 100 nm or less, diameter of the catalyst nanoparticle is 1.7 nm or more and 3.1 nm or less, and diameter of the carbon nanoparticle is 1.0 nm or more and 11.2 nm or less. According to this combination of these elements, the catalyst nanoparticles are confined within three-dimensional structure to be formed by the carbon nanoparticles and are immobilized without losing space which allows any reactant to be accessed to the surface of the catalyst nanoparticles.
摘要:
The present invention provides a method for producing a manganese oxide nanoparticle dispersed material having steps of dissolving manganese nitrate in a polyamide acid solution (Step 1); forming a coating on the surface of the substrate using the polyamide acid solution containing manganese nitrate dissolved therein (Step 2); and carbonizing the polyamide acid and depositing manganese oxide nanoparticles by subjecting the coating to a heat treatment at a temperature not less than 600° C. but not more than 1200° C. (Step 3).
摘要:
It is an object of the present invention to provide an oxygen reduction electrode which provides four-electron reduction reaction with high selectivity in the reaction of reducing oxygen. The present invention involves a method of manufacturing an electrode for reducing oxygen used for four-electron reduction of oxygen, having (1) a first step wherein a charcoal-based material is obtained by carbonization of a starting material comprising a nitrogen-containing synthetic polymer, and (2) a second step wherein the electrode for reducing oxygen is manufactured using an electrode material comprising the charcoal-based material.
摘要:
It is an object of the present invention to provide an oxygen reduction electrode which provides four-electron reduction reaction with high selectivity in the reaction of reducing oxygen. The present invention involves a method of manufacturing an electrode for reducing oxygen used for four-electron reduction of oxygen, having (1) a first step wherein a charcoal-based material is obtained by carbonization of a starting material comprising a nitrogen-containing synthetic polymer, and (2) a second step wherein the electrode for reducing oxygen is manufactured using an electrode material comprising the charcoal-based material.
摘要:
The present invention provides a method for producing a manganese oxide nanoparticle dispersed material having steps of dissolving manganese nitrate in a polyamide acid solution (Step 1); forming a coating on the surface of the substrate using the polyamide acid solution containing manganese nitrate dissolved therein (Step 2); and carbonizing the polyamide acid and depositing manganese oxide nanoparticles by subjecting the coating to a heat treatment at a temperature not less than 600° C. but not more than 1200° C. (Step 3).
摘要:
The present invention provides an electron emission material that is excellent in electron emission characteristics, a method of manufacturing the same, as well as an electron emission element. The method is a method of manufacturing an electron emission material including a carbon material obtained by baking a polymer film. In the method, a polyamic acid solution is prepared in which at least one metallic compound selected from a metal oxide and a metal carbonate is dispersed; the polyamic acid solution thus prepared is formed into a film and then is imidized to form a polyimide film including the metallic compound; and then the polyimide film thus formed is baked to form the carbon material. The electron emission material is formed so that it includes a carbon material, a protrusion having a concavity in its surface is formed at the surface of the carbon material, and the protrusion includes a metallic element.
摘要:
It is an object of the present invention to provide a high thermal conductive element that has improved thermal conductivity in the layer direction while retaining the high thermal conductivity characteristics in the planar direction possessed by graphite. The present invention is a high thermal conductive element in which carbon particles are dispersed in a graphite-based matrix, wherein (1) the c axis of the graphene layers constituting the graphite are substantially parallel, (2) the thermal conductivity κ∥ in a direction perpendicular to the c axis is at least 400 W/m·k and no more than 1000 W/m·k, and (3) the thermal conductivity κ⊥ in a direction parallel to the c axis is at least 10 W/m·k and no more than 100 W/m·k.
摘要:
The present invention provides an electron emission material that is excellent in electron emission characteristics, a method of manufacturing the same, as well as an electron emission element. The method is a method of manufacturing an electron emission material including a carbon material obtained by baking a polymer film. In the method, a polyamic acid solution is prepared in which at least one metallic compound selected from a metal oxide and a metal carbonate is dispersed; the polyamic acid solution thus prepared is formed into a film and then is imidized to form a polyimide film including the metallic compound; and then the polyimide film thus formed is baked to form the carbon material. The electron emission material is formed so that it includes a carbon material, a protrusion having a concavity in its surface is formed at the surface of the carbon material, and the protrusion includes a metallic element.
摘要:
The present invention provides an electron emission material that is excellent in electron emission characteristics, a method of manufacturing the same, as well as an electron emission element. The method is a method of manufacturing an electron emission material including a carbon material obtained by baking a polymer film. In the method, a polyamic acid solution is prepared in which at least one metallic compound selected from a metal oxide and a metal carbonate is dispersed; the polyamic acid solution thus prepared is formed into a film and then is imidized to form a polyimide film including the metallic compound; and then the polyimide film thus formed is baked to form the carbon material. The electron emission material is formed so that it includes a carbon material, a protrusion having a concavity in its surface is formed at the surface of the carbon material, and the protrusion includes a metallic element.