Abstract:
A system for indoor localization using satellite navigation signals in a Distributed Antenna System. The system includes a plurality of Off-Air Access Units (OAAUs), each operable to receive an individual satellite navigation signal from at least one of a plurality of satellite navigation systems (e.g., GPS, GLONASS, Galileo, QZSS, or BeiDou) and operable to route signals optically to one or more DAUs. The system further includes a plurality of remote DRUs located at a Remote location that are operable to receive signals from a plurality of local DAUs. Moreover, the system includes an algorithm to delay each individual satellite navigation signal for providing indoor localization at each of the plurality of DRUs.
Abstract:
A real-time locating system (RTLS) for localization using satellite navigation signals in a Distributed Antenna System includes Off-Air Access Units (OAAUs), each being operable to receive an individual satellite navigation signal from a satellite and to route signals optically to a digital access unit (DAU). Remote digital remote units (DRUs) are located at Remote locations and are operable to receive signals the DAUs. Each individual satellite navigation signal can be appropriately delayed (in a manner that accounts for a DRU's location). For each antenna, a separation distance between a mobile station and a DRU can be estimated based on a signal receipt time at the station. In combination, these distances can be used to estimate the mobile station's precise indoor position.
Abstract:
A method for communicating with wireless user devices includes receiving a signal at a DAU, the signal residing within a first frequency band and processing the signal at the DAU. The method also includes transmitting the processed signal from the DAU and receiving the transmitted signal at a DRU. The method further includes converting the signal to a second frequency band different than the first frequency band.
Abstract:
A real-time locating system (RTLS) for localization using satellite navigation signals in a Distributed Antenna System includes Off-Air Access Units (OAAUs), each being operable to receive an individual satellite navigation signal from a satellite and to route signals optically to a digital access unit (DAU). Remote digital remote units (DRUs) are located at Remote locations and are operable to receive signals the DAUs. Each individual satellite navigation signal can be appropriately delayed (in a manner that accounts for a DRU's location). For each antenna, a separation distance between a mobile station and a DRU can be estimated based on a signal receipt time at the station. In combination, these distances can be used to estimate the mobile station's precise indoor position.
Abstract:
A real-time locating system (RTLS) for localization using satellite navigation signals in a Distributed Antenna System includes Off-Air Access Units (OAAUs), each being operable to receive an individual satellite navigation signal from a satellite and to route signals optically to a digital access unit (DAU). Remote digital remote units (DRUs) are located at Remote locations and are operable to receive signals the DAUs. Each individual satellite navigation signal can be appropriately delayed (in a manner that accounts for a DRU's location). For each antenna, a separation distance between a mobile station and a DRU can be estimated based on a signal receipt time at the station. In combination, these distances can be used to estimate the mobile station's precise indoor position.
Abstract:
In some embodiments of the invention, a system for managing resource use in a Distributed Antenna System is provided. The system may include: a plurality of Digital Remote Units (DRUs) configured to send and receive wireless radio signals; a plurality of sectors, each configured to send and receive wireless radio signals; and a plurality of inter-connected Digital Access Units (DAUs), each configured to communicate with at least one of the DRUs via optical signals, and each being coupled to at least one of the sectors.
Abstract:
A system for indoor localization using satellite navigation signals in a Distributed Antenna System. The system includes a plurality of Off-Air Access Units (OAAUs), each operable to receive an individual satellite navigation signal from at least one of a plurality of satellite navigation systems (e.g., GPS, GLONASS, Galileo, QZSS, or BeiDou) and operable to route signals optically to one or more DAUs. The system further includes a plurality of remote DRUs located at a Remote location that are operable to receive signals from a plurality of local DAUs. Moreover, the system includes an algorithm to delay each individual satellite navigation signal for providing indoor localization at each of the plurality of DRUs.
Abstract:
A system for indoor localization using satellite navigation signals in a Distributed Antenna System. The system includes a plurality of Off-Air Access Units (OAAUs), each operable to receive an individual satellite navigation signal from at least one of a plurality of satellite navigation systems (e.g., GPS, GLONASS, Galileo, QZSS, or BeiDou) and operable to route signals optically to one or more DAUs. The system further includes a plurality of remote DRUs located at a Remote location that are operable to receive signals from a plurality of local DAUs. Moreover, the system includes an algorithm to delay each individual satellite navigation signal for providing indoor localization at each of the plurality of DRUs.
Abstract:
In some embodiments of the invention, a system for managing resource use in a Distributed Antenna System is provided. The system may include: a plurality of Digital Remote Units (DRUs) configured to send and receive wireless radio signals; a plurality of sectors, each configured to send and receive wireless radio signals; and a plurality of inter-connected Digital Access Units (DAUs), each configured to communicate with at least one of the DRUs via optical signals, and each being coupled to at least one of the sectors.