Abstract:
An objective lens system having reconfigurable optical components that enable the inspection of inspection surfaces in the absence of a pellicle or through a thin membrane pellicle, and using the same system, also enabling the inspection of inspection surfaces through a thick pellicle. An objective lens system includes a first group and a second group of optical elements. The first group of optical elements enables high numerical aperture and beam contraction. The second group of optical elements is capable of two mode operation enabling, in one mode, inspection through a thin membrane pellicle or in the absence of a pellicle and in another mode, enabling inspection through a thick pellicle. The system can also be enhanced through the use of an interposable aberration corrector plate that is used to correct optical aberrations caused by the presence, absence, or thickness of pellicles.
Abstract:
Methods and apparatus relating to electromagnetic beam (e.g., laser beam) conditioning are described. In an embodiment, electromagnetic beam conditioning may be performed utilizing reflectors to temporally differentiate electromagnetic beam subsections and sub-beams resulting in reduced spatial coherence of the beam. Other embodiments are also described.
Abstract:
Methods for detecting and classifying defects on a reticle are provided. One method includes acquiring images of the reticle at first and second conditions during inspection of the reticle. The first condition is different than the second condition. The method also includes detecting the defects on the reticle using one or more of the images acquired at the first condition. In addition, the method includes classifying an importance of the defects detected on the reticle using one or more of the images acquired at the second condition. The detecting and classifying steps are performed substantially simultaneously during the inspection.
Abstract:
Methods for detecting and classifying defects on a reticle are provided. One method includes acquiring images of the reticle at first and second conditions during inspection of the reticle. The first condition is different than the second condition. The method also includes detecting the defects on the reticle using one or more of the images acquired at the first condition. In addition, the method includes classifying an importance of the defects detected on the reticle using one or more of the images acquired at the second condition. The detecting and classifying steps are performed substantially simultaneously during the inspection.
Abstract:
Disclosed is an optical inspection system for inspecting the surface of a substrate. The optical inspection system includes a light source for emitting an incident light beam along an optical axis and a first set of optical elements arranged for separating the incident light beam into a plurality of light beams, directing the plurality of light beams to intersect with the surface of the substrate, and focusing the plurality of light beams to a plurality of scanning spots on the surface of the substrate. The inspection system further includes a light detector arrangement including individual light detectors that correspond to individual ones of a plurality of reflected or transmitted light beams caused by the intersection of the plurality of light beams with the surface of the substrate. The light detectors are arranged for sensing the light intensity of either the reflected or transmitted light.
Abstract:
Disclosed is an optical inspection system for inspecting the surface of a substrate. The optical inspection system includes a light source for emitting an incident light beam along an optical axis and a first set of optical elements arranged for separating the incident light beam into a plurality of light beams, directing the plurality of light beams to intersect with the surface of the substrate, and focusing the plurality of light beams to a plurality of scanning spots on the surface of the substrate. The inspection system further includes a light detector arrangement including individual light detectors that correspond to individual ones of a plurality of reflected or transmitted light beams caused by the intersection of the plurality of light beams with the surface of the substrate. The light detectors are arranged for sensing the light intensity of either the reflected or transmitted light.
Abstract:
Disclosed is an optical inspection system for inspecting the surface of a substrate. The optical inspection system includes a light source for emitting an incident light beam along an optical axis and a first set of optical elements arranged for separating the incident light beam into a plurality of light beams, directing the plurality of light beams to intersect with the surface of the substrate, and focusing the plurality of light beams to a plurality of scanning spots on the surface of the substrate. The inspection system further includes a light detector arrangement including individual light detectors that correspond to individual ones of a plurality of reflected or transmitted light beams caused by the intersection of the plurality of light beams with the surface of the substrate. The light detectors are arranged for sensing the light intensity of either the reflected or transmitted light.
Abstract:
Disclosed is an apparatus for illuminating a sample. In one embodiment, this apparatus includes a laser for outputting an incident laser beam towards a sample and a first diffractive element having a plurality of diffraction pattern portions. The first diffractive element is movable so that each of its diffraction pattern portions can be selectively positioned in the incident beam's path and the diffraction pattern portions of the first diffractive element are designed to cause the incident beam to have different spatial illumination profiles at a pupil plane of the incident beam while reducing effects caused by the incident beam's coherence. The apparatus further includes an illumination profile element configured to spatially distribute light at an illumination plane of the incident beam and a plurality of illumination optical elements for directing the incident beam towards the sample. In a specific implementation, each of the first diffractive element's diffractive pattern portions is an annular section that is selectively positionable in the incident beam's path and the first diffractive element is rotatable so as to position different cells of its selected annular section into the incident beam's path to thereby reduce effects caused by the incident beam's coherence.